@@ -204,6 +204,17 @@ def all_fsl_pipeline(name='fsl_all_correct',
204
204
*DWI* [Jones10]_.
205
205
206
206
207
+ Examples
208
+ --------
209
+
210
+ >>> from nipype.workflows.dmri.fsl.artifacts import all_fsl_pipeline
211
+ >>> allcorr = all_fsl_pipeline()
212
+ >>> allcorr.inputs.inputnode.in_file = 'epi.nii'
213
+ >>> allcorr.inputs.inputnode.alt_file = 'epi_rev.nii'
214
+ >>> allcorr.inputs.inputnode.in_bval = 'diffusion.bval'
215
+ >>> allcorr.inputs.inputnode.in_bvec = 'diffusion.bvec'
216
+ >>> allcorr.run() # doctest: +SKIP
217
+
207
218
"""
208
219
209
220
inputnode = pe .Node (niu .IdentityInterface (fields = ['in_file' , 'in_bvec' ,
@@ -285,7 +296,7 @@ def hmc_pipeline(name='motion_correct'):
285
296
can be chained.
286
297
This is useful to correct for artifacts with only one interpolation process
287
298
(as previously discussed `here
288
- <https://github.com/nipy/nipype/pull/530#issuecomment-14505042>`_),
299
+ <https://github.com/nipy/nipype/pull/530#issuecomment-14505042>`_),
289
300
and also to compute nuisance regressors as proposed by [Yendiki13]_.
290
301
291
302
.. warning:: This workflow rotates the `b`-vectors, so please be advised
@@ -657,7 +668,7 @@ def sdc_peb(name='peb_correction',
657
668
(e.g. *A>>>P* and *P>>>A*, or equivalently, *-y* and *y*)
658
669
as in [Chiou2000]_, but it is also possible to use orthogonal
659
670
configurations [Cordes2000]_ (e.g. *A>>>P* and *L>>>R*,
660
- or equivalently *-y* and *x*).
671
+ or equivalently *-y* and *x*).
661
672
This workflow uses the implementation of FSL
662
673
(`TOPUP <http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP>`_).
663
674
@@ -756,6 +767,17 @@ def remove_bias(name='bias_correct'):
756
767
<http://dx.doi.org/10.1016/j.neuroimage.2014.07.061>`_. NeuroImage (2014).
757
768
doi: 10.1016/j.neuroimage.2014.07.061
758
769
770
+
771
+ Example
772
+ -------
773
+
774
+ >>> from nipype.workflows.dmri.fsl.artifacts import remove_bias
775
+ >>> bias = remove_bias()
776
+ >>> bias.inputs.inputnode.in_file = 'epi.nii'
777
+ >>> bias.inputs.inputnode.in_bval = 'diffusion.bval'
778
+ >>> bias.inputs.inputnode.in_mask = 'mask.nii'
779
+ >>> bias.run() # doctest: +SKIP
780
+
759
781
"""
760
782
inputnode = pe .Node (niu .IdentityInterface (fields = ['in_file' , 'in_bval' ,
761
783
'in_mask' ]), name = 'inputnode' )
0 commit comments