@@ -320,8 +320,6 @@ class RegistrationInputSpec(ANTSCommandInputSpec):
320320 low = 0.0 , high = 1.0 , value = 1.0 , argstr = '%s' , usedefault = True , desc = "The Upper quantile to clip image ranges" )
321321 winsorize_lower_quantile = traits .Range (
322322 low = 0.0 , high = 1.0 , value = 0.0 , argstr = '%s' , usedefault = True , desc = "The Lower quantile to clip image ranges" )
323- collapse_linear_transforms_to_fixed_image_header = traits .Bool (
324- argstr = '%s' , default = False , usedefault = True , desc = '' )
325323
326324
327325class RegistrationOutputSpec (TraitedSpec ):
@@ -376,21 +374,20 @@ class Registration(ANTSCommand):
376374
377375 >>> reg1 = copy.deepcopy(reg)
378376 >>> reg1.inputs.winsorize_lower_quantile = 0.025
379- >>> reg1.inputs.collapse_linear_transforms_to_fixed_image_header = False
380377 >>> reg1.cmdline
381- 'antsRegistration --collapse-linear-transforms-to-fixed-image-header 0 --collapse- output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
378+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
382379 >>> reg1.run() #doctest: +SKIP
383380
384381 >>> reg2 = copy.deepcopy(reg)
385382 >>> reg2.inputs.winsorize_upper_quantile = 0.975
386383 >>> reg2.cmdline
387- 'antsRegistration --collapse-linear-transforms-to-fixed-image-header 0 --collapse- output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
384+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
388385
389386 >>> reg3 = copy.deepcopy(reg)
390387 >>> reg3.inputs.winsorize_lower_quantile = 0.025
391388 >>> reg3.inputs.winsorize_upper_quantile = 0.975
392389 >>> reg3.cmdline
393- 'antsRegistration --collapse-linear-transforms-to-fixed-image-header 0 --collapse- output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
390+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
394391
395392 >>> # Test collapse transforms flag
396393 >>> reg4 = copy.deepcopy(reg)
@@ -408,7 +405,7 @@ class Registration(ANTSCommand):
408405 >>> reg5.inputs.sampling_strategy = ['Random', None] # use default strategy in second stage
409406 >>> reg5.inputs.sampling_percentage = [0.05, [0.05, 0.10]]
410407 >>> reg5.cmdline
411- 'antsRegistration --collapse-linear-transforms-to-fixed-image-header 0 --collapse- output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric CC[ fixed1.nii, moving1.nii, 1, 4, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric CC[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
408+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric CC[ fixed1.nii, moving1.nii, 1, 4, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric CC[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
412409 """
413410 DEF_SAMPLING_STRATEGY = 'None'
414411 """The default sampling strategy argument."""
@@ -579,9 +576,11 @@ def _formatWinsorizeImageIntensities(self):
579576
580577 def _formatCollapseLinearTransformsToFixedImageHeader (self ):
581578 if self .inputs .collapse_linear_transforms_to_fixed_image_header :
582- return '--collapse-linear-transforms-to-fixed-image-header 1'
579+ # return '--collapse-linear-transforms-to-fixed-image-header 1'
580+ return ''
583581 else :
584- return '--collapse-linear-transforms-to-fixed-image-header 0'
582+ # return '--collapse-linear-transforms-to-fixed-image-header 0'
583+ return ''
585584
586585 def _format_arg (self , opt , spec , val ):
587586 if opt == 'fixed_image_mask' :
0 commit comments