@@ -32,11 +32,11 @@ The ``MultiProc`` workflow plugin schedules node execution based on the
32
32
resources used by the current running nodes and the total resources available to
33
33
the workflow. The plugin utilizes the plugin arguments ``n_procs `` and
34
34
``memory_gb `` to set the maximum resources a workflow can utilize. To limit a
35
- workflow to using 4 cores and 6 GB of RAM:
35
+ workflow to using 8 cores and 10 GB of RAM:
36
36
37
37
::
38
38
39
- args_dict = {'n_procs' : 4 , 'memory_gb' : 6 }
39
+ args_dict = {'n_procs' : 8 , 'memory_gb' : 10 }
40
40
workflow.run(plugin='MultiProc', plugin_args=args_dict)
41
41
42
42
If these values are not specifically set then the plugin will assume it can
@@ -46,9 +46,9 @@ for ``n_procs`` and ``memory_gb``, respectively.
46
46
47
47
The plugin will then queue eligible nodes for execution based on their expected
48
48
usage via the ``num_threads `` and ``estimated_memory_gb `` interface parameters.
49
- If the plugin sees that only 3 of its 4 processors and 4 GB of its 6 GB of RAM
49
+ If the plugin sees that only 3 of its 8 processors and 4 GB of its 10 GB of RAM
50
50
are being used by running nodes, it will attempt to execute the next available
51
- node as long as its ``num_threads = 1 `` and ``estimated_memory_gb <= 2 ``. If
51
+ node as long as its ``num_threads <= 5 `` and ``estimated_memory_gb <= 6 ``. If
52
52
this is not the case, it will continue to check every available node in the
53
53
queue until it sees a node that meets these conditions, or it waits for an
54
54
executing node to finish to earn back the necessary resources. The priority of
@@ -83,7 +83,7 @@ by setting the ``status_callback`` parameter to point to this function in the
83
83
::
84
84
85
85
from nipype.pipeline.plugins.callback_log import log_nodes_cb
86
- args_dict = {'n_procs' : 4 , 'memory_gb' : 6 , 'status_callback' : log_nodes_cb}
86
+ args_dict = {'n_procs' : 8 , 'memory_gb' : 10 , 'status_callback' : log_nodes_cb}
87
87
88
88
To set the filepath for the callback log the ``'callback' `` logger must be
89
89
configured.
@@ -142,13 +142,13 @@ The pandas_ Python package is required to use this feature.
142
142
::
143
143
144
144
from nipype.pipeline.plugins.callback_log import log_nodes_cb
145
- args_dict = {'n_procs' : 4 , 'memory_gb' : 6 , 'status_callback' : log_nodes_cb}
145
+ args_dict = {'n_procs' : 8 , 'memory_gb' : 10 , 'status_callback' : log_nodes_cb}
146
146
workflow.run(plugin='MultiProc', plugin_args=args_dict)
147
147
148
148
# ...workflow finishes and writes callback log to '/home/user/run_stats.log'
149
149
150
150
from nipype.utils.draw_gantt_chart import generate_gantt_chart
151
- generate_gantt_chart('/home/user/run_stats.log', cores=4 )
151
+ generate_gantt_chart('/home/user/run_stats.log', cores=8 )
152
152
# ...creates gantt chart in '/home/user/run_stats.log.html'
153
153
154
154
The `generate_gantt_chart`` function will create an html file that can be viewed
0 commit comments