Skip to content

Commit d67d503

Browse files
author
Mathieu Dubois
committed
DOC PEP8 edits in examples/fmri_ants_openfmri.py
1 parent 6d81823 commit d67d503

File tree

1 file changed

+50
-52
lines changed

1 file changed

+50
-52
lines changed

examples/fmri_ants_openfmri.py

Lines changed: 50 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -70,11 +70,11 @@ def create_reg_workflow(name='registration'):
7070
register = pe.Workflow(name=name)
7171

7272
inputnode = pe.Node(interface=niu.IdentityInterface(fields=['source_files',
73-
'mean_image',
74-
'anatomical_image',
75-
'target_image',
76-
'target_image_brain',
77-
'config_file']),
73+
'mean_image',
74+
'anatomical_image',
75+
'target_image',
76+
'target_image_brain',
77+
'config_file']),
7878
name='inputspec')
7979
outputnode = pe.Node(interface=niu.IdentityInterface(fields=['func2anat_transform',
8080
'anat2target_transform',
@@ -136,7 +136,7 @@ def create_reg_workflow(name='registration'):
136136
convert2itk.inputs.fsl2ras = True
137137
convert2itk.inputs.itk_transform = True
138138
register.connect(mean2anatbbr, 'out_matrix_file', convert2itk, 'transform_file')
139-
register.connect(inputnode, 'mean_image',convert2itk, 'source_file')
139+
register.connect(inputnode, 'mean_image', convert2itk, 'source_file')
140140
register.connect(stripper, 'out_file', convert2itk, 'reference_file')
141141

142142
"""
@@ -177,8 +177,7 @@ def create_reg_workflow(name='registration'):
177177
reg.inputs.num_threads = 2
178178
reg.plugin_args = {'qsub_args': '-pe orte 2'}
179179
register.connect(stripper, 'out_file', reg, 'moving_image')
180-
register.connect(inputnode,'target_image_brain', reg,'fixed_image')
181-
180+
register.connect(inputnode, 'target_image_brain', reg, 'fixed_image')
182181

183182
"""
184183
Concatenate the affine and ants transforms into a list
@@ -190,7 +189,6 @@ def create_reg_workflow(name='registration'):
190189
register.connect(convert2itk, 'itk_transform', merge, 'in2')
191190
register.connect(reg, ('composite_transform', pickfirst), merge, 'in1')
192191

193-
194192
"""
195193
Transform the mean image. First to anatomical and then to target
196194
"""
@@ -202,7 +200,7 @@ def create_reg_workflow(name='registration'):
202200
warpmean.inputs.invert_transform_flags = [False, False]
203201
warpmean.inputs.terminal_output = 'file'
204202

205-
register.connect(inputnode,'target_image_brain', warpmean,'reference_image')
203+
register.connect(inputnode, 'target_image_brain', warpmean, 'reference_image')
206204
register.connect(inputnode, 'mean_image', warpmean, 'input_image')
207205
register.connect(merge, 'out', warpmean, 'transforms')
208206

@@ -218,11 +216,10 @@ def create_reg_workflow(name='registration'):
218216
warpall.inputs.invert_transform_flags = [False, False]
219217
warpall.inputs.terminal_output = 'file'
220218

221-
register.connect(inputnode,'target_image_brain',warpall,'reference_image')
222-
register.connect(inputnode,'source_files', warpall, 'input_image')
219+
register.connect(inputnode, 'target_image_brain', warpall, 'reference_image')
220+
register.connect(inputnode, 'source_files', warpall, 'input_image')
223221
register.connect(merge, 'out', warpall, 'transforms')
224222

225-
226223
"""
227224
Assign all the output files
228225
"""
@@ -240,6 +237,7 @@ def create_reg_workflow(name='registration'):
240237
Get info for a given subject
241238
"""
242239

240+
243241
def get_subjectinfo(subject_id, base_dir, task_id, model_id):
244242
"""Get info for a given subject
245243
@@ -284,7 +282,7 @@ def get_subjectinfo(subject_id, base_dir, task_id, model_id):
284282
for idx in range(n_tasks):
285283
taskidx = np.where(taskinfo[:, 0] == 'task%03d' % (idx + 1))
286284
conds.append([condition.replace(' ', '_') for condition
287-
in taskinfo[taskidx[0], 2]]) # if 'junk' not in condition])
285+
in taskinfo[taskidx[0], 2]]) # if 'junk' not in condition])
288286
files = sorted(glob(os.path.join(base_dir,
289287
subject_id,
290288
'BOLD',
@@ -298,6 +296,7 @@ def get_subjectinfo(subject_id, base_dir, task_id, model_id):
298296
Analyzes an open fmri dataset
299297
"""
300298

299+
301300
def analyze_openfmri_dataset(data_dir, subject=None, model_id=None,
302301
task_id=None, output_dir=None, subj_prefix='*',
303302
hpcutoff=120., use_derivatives=True,
@@ -368,15 +367,15 @@ def analyze_openfmri_dataset(data_dir, subject=None, model_id=None,
368367
has_contrast = os.path.exists(contrast_file)
369368
if has_contrast:
370369
datasource = pe.Node(nio.DataGrabber(infields=['subject_id', 'run_id',
371-
'task_id', 'model_id'],
372-
outfields=['anat', 'bold', 'behav',
373-
'contrasts']),
374-
name='datasource')
370+
'task_id', 'model_id'],
371+
outfields=['anat', 'bold', 'behav',
372+
'contrasts']),
373+
name='datasource')
375374
else:
376375
datasource = pe.Node(nio.DataGrabber(infields=['subject_id', 'run_id',
377-
'task_id', 'model_id'],
378-
outfields=['anat', 'bold', 'behav']),
379-
name='datasource')
376+
'task_id', 'model_id'],
377+
outfields=['anat', 'bold', 'behav']),
378+
name='datasource')
380379
datasource.inputs.base_directory = data_dir
381380
datasource.inputs.template = '*'
382381

@@ -388,19 +387,19 @@ def analyze_openfmri_dataset(data_dir, subject=None, model_id=None,
388387
'contrasts': ('models/model%03d/'
389388
'task_contrasts.txt')}
390389
datasource.inputs.template_args = {'anat': [['subject_id']],
391-
'bold': [['subject_id', 'task_id']],
392-
'behav': [['subject_id', 'model_id',
393-
'task_id', 'run_id']],
394-
'contrasts': [['model_id']]}
390+
'bold': [['subject_id', 'task_id']],
391+
'behav': [['subject_id', 'model_id',
392+
'task_id', 'run_id']],
393+
'contrasts': [['model_id']]}
395394
else:
396395
datasource.inputs.field_template = {'anat': '%s/anatomy/highres001.nii.gz',
397396
'bold': '%s/BOLD/task%03d_r*/bold.nii.gz',
398397
'behav': ('%s/model/model%03d/onsets/task%03d_'
399398
'run%03d/cond*.txt')}
400399
datasource.inputs.template_args = {'anat': [['subject_id']],
401-
'bold': [['subject_id', 'task_id']],
402-
'behav': [['subject_id', 'model_id',
403-
'task_id', 'run_id']]}
400+
'bold': [['subject_id', 'task_id']],
401+
'behav': [['subject_id', 'model_id',
402+
'task_id', 'run_id']]}
404403

405404
datasource.inputs.sort_filelist = True
406405

@@ -443,7 +442,7 @@ def get_contrasts(contrast_file, task_id, conds):
443442
for row in contrast_def:
444443
if row[0] != 'task%03d' % task_id:
445444
continue
446-
con = [row[1], 'T', ['cond%03d' % (i + 1) for i in range(len(conds))],
445+
con = [row[1], 'T', ['cond%03d' % (i + 1) for i in range(len(conds))],
447446
row[2:].astype(float).tolist()]
448447
contrasts.append(con)
449448
# add auto contrasts for each column
@@ -469,7 +468,7 @@ def get_contrasts(contrast_file, task_id, conds):
469468
name="art")
470469

471470
modelspec = pe.Node(interface=model.SpecifyModel(),
472-
name="modelspec")
471+
name="modelspec")
473472
modelspec.inputs.input_units = 'secs'
474473

475474
def check_behav_list(behav, run_id, conds):
@@ -483,9 +482,9 @@ def check_behav_list(behav, run_id, conds):
483482
return behav_array.reshape(num_elements/num_conds, num_conds).tolist()
484483

485484
reshape_behav = pe.Node(niu.Function(input_names=['behav', 'run_id', 'conds'],
486-
output_names=['behav'],
487-
function=check_behav_list),
488-
name='reshape_behav')
485+
output_names=['behav'],
486+
function=check_behav_list),
487+
name='reshape_behav')
489488

490489
wf.connect(subjinfo, 'TR', modelspec, 'time_repetition')
491490
wf.connect(datasource, 'behav', reshape_behav, 'behav')
@@ -553,7 +552,7 @@ def sort_copes(copes, varcopes, contrasts):
553552
('varcopes', 'inputspec.varcopes'),
554553
('n_runs', 'l2model.num_copes')]),
555554
(modelfit, fixed_fx, [('outputspec.dof_file',
556-
'inputspec.dof_files'),
555+
'inputspec.dof_files'),
557556
])
558557
])
559558

@@ -576,9 +575,9 @@ def merge_files(copes, varcopes, zstats):
576575

577576
mergefunc = pe.Node(niu.Function(input_names=['copes', 'varcopes',
578577
'zstats'],
579-
output_names=['out_files', 'splits'],
580-
function=merge_files),
581-
name='merge_files')
578+
output_names=['out_files', 'splits'],
579+
function=merge_files),
580+
name='merge_files')
582581
wf.connect([(fixed_fx.get_node('outputspec'), mergefunc,
583582
[('copes', 'copes'),
584583
('varcopes', 'varcopes'),
@@ -596,24 +595,23 @@ def split_files(in_files, splits):
596595
output_names=['copes', 'varcopes',
597596
'zstats'],
598597
function=split_files),
599-
name='split_files')
598+
name='split_files')
600599
wf.connect(mergefunc, 'splits', splitfunc, 'splits')
601600
wf.connect(registration, 'outputspec.transformed_files',
602601
splitfunc, 'in_files')
603602

604-
605603
"""
606604
Connect to a datasink
607605
"""
608606

609607
def get_subs(subject_id, conds, model_id, task_id):
610608
subs = [('_subject_id_%s_' % subject_id, '')]
611-
subs.append(('_model_id_%d' % model_id, 'model%03d' %model_id))
609+
subs.append(('_model_id_%d' % model_id, 'model%03d' % model_id))
612610
subs.append(('task_id_%d/' % task_id, '/task%03d_' % task_id))
613611
subs.append(('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_warp',
614-
'mean'))
612+
'mean'))
615613
subs.append(('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_flirt',
616-
'affine'))
614+
'affine'))
617615

618616
for i in range(len(conds)):
619617
subs.append(('_flameo%d/cope1.' % i, 'cope%02d.' % (i + 1)))
@@ -699,7 +697,7 @@ def get_subs(subject_id, conds, model_id, task_id):
699697
help="Model index" + defstr)
700698
parser.add_argument('-x', '--subjectprefix', default='sub*',
701699
help="Subject prefix" + defstr)
702-
parser.add_argument('-t', '--task', default=1, #nargs='+',
700+
parser.add_argument('-t', '--task', default=1,
703701
type=int, help="Task index" + defstr)
704702
parser.add_argument('--hpfilter', default=120.,
705703
type=float, help="High pass filter cutoff (in secs)" + defstr)
@@ -729,16 +727,16 @@ def get_subs(subject_id, conds, model_id, task_id):
729727
'task%03d' % int(args.task))
730728
derivatives = args.derivatives
731729
if derivatives is None:
732-
derivatives = False
730+
derivatives = False
733731
wf = analyze_openfmri_dataset(data_dir=os.path.abspath(args.datasetdir),
734-
subject=args.subject,
735-
model_id=int(args.model),
736-
task_id=[int(args.task)],
737-
subj_prefix=args.subjectprefix,
738-
output_dir=outdir,
739-
hpcutoff=args.hpfilter,
740-
use_derivatives=derivatives,
741-
fwhm=args.fwhm)
732+
subject=args.subject,
733+
model_id=int(args.model),
734+
task_id=[int(args.task)],
735+
subj_prefix=args.subjectprefix,
736+
output_dir=outdir,
737+
hpcutoff=args.hpfilter,
738+
use_derivatives=derivatives,
739+
fwhm=args.fwhm)
742740
wf.base_dir = work_dir
743741
if args.plugin_args:
744742
wf.run(args.plugin, plugin_args=eval(args.plugin_args))

0 commit comments

Comments
 (0)