|
3 | 3 | import nipype.pipeline.engine as pe
|
4 | 4 | from nipype.interfaces import utility as niu
|
5 | 5 | from nipype.interfaces import fsl
|
| 6 | +from nipype.algorithms import misc |
6 | 7 | import os
|
7 | 8 |
|
8 | 9 | #backwards compatibility
|
@@ -121,3 +122,108 @@ def merge_and_mean(name='mm'):
|
121 | 122 | (mean, outputnode, [('out_file', 'mean')])
|
122 | 123 | ])
|
123 | 124 | return wf
|
| 125 | + |
| 126 | + |
| 127 | +def bedpostx_parallel(name='bedpostx_parallel', params={}): |
| 128 | + """ |
| 129 | + Does the same as :func:`.create_bedpostx_pipeline` by splitting |
| 130 | + the input dMRI in small ROIs that are better suited for parallel |
| 131 | + processing). |
| 132 | +
|
| 133 | + Example |
| 134 | + ------- |
| 135 | +
|
| 136 | + >>> from nipype.workflows.dmri.fsl.dti import bedpostx_parallel |
| 137 | + >>> params = dict(n_fibres = 2, fudge = 1, burn_in = 1000, |
| 138 | + ... n_jumps = 1250, sample_every = 25) |
| 139 | + >>> bpwf = bedpostx_parallel('nipype_bedpostx_parallel', params) |
| 140 | + >>> bpwf.inputs.inputnode.dwi = 'diffusion.nii' |
| 141 | + >>> bpwf.inputs.inputnode.mask = 'mask.nii' |
| 142 | + >>> bpwf.inputs.inputnode.bvecs = 'bvecs' |
| 143 | + >>> bpwf.inputs.inputnode.bvals = 'bvals' |
| 144 | + >>> bpwf.run(plugin='CondorDAGMan') # doctest: +SKIP |
| 145 | +
|
| 146 | + Inputs:: |
| 147 | +
|
| 148 | + inputnode.dwi |
| 149 | + inputnode.mask |
| 150 | + inputnode.bvecs |
| 151 | + inputnode.bvals |
| 152 | +
|
| 153 | + Outputs:: |
| 154 | +
|
| 155 | + outputnode wraps all XFibres outputs |
| 156 | +
|
| 157 | + """ |
| 158 | + |
| 159 | + inputnode = pe.Node(niu.IdentityInterface(fields=['dwi', 'mask', |
| 160 | + 'bvecs', 'bvals']), name='inputnode') |
| 161 | + slice_dwi = pe.Node(misc.SplitROIs(roi_size=(5, 5, 1)), name='slice_dwi') |
| 162 | + xfib_if = fsl.XFibres(**params) |
| 163 | + xfibres = pe.MapNode(xfib_if, name='xfibres', |
| 164 | + iterfield=['dwi', 'mask']) |
| 165 | + |
| 166 | + make_dyads = pe.MapNode(fsl.MakeDyadicVectors(), name="make_dyads", |
| 167 | + iterfield=['theta_vol', 'phi_vol']) |
| 168 | + out_fields = ['dyads', 'dyads_disp', |
| 169 | + 'thsamples', 'phsamples', 'fsamples', |
| 170 | + 'mean_thsamples', 'mean_phsamples', 'mean_fsamples'] |
| 171 | + |
| 172 | + outputnode = pe.Node(niu.IdentityInterface(fields=out_fields), |
| 173 | + name='outputnode') |
| 174 | + |
| 175 | + wf = pe.Workflow(name=name) |
| 176 | + wf.connect([ |
| 177 | + (inputnode, slice_dwi, [('dwi', 'in_file'), |
| 178 | + ('mask', 'in_mask')]), |
| 179 | + (slice_dwi, xfibres, [('out_files', 'dwi'), |
| 180 | + ('out_masks', 'mask')]), |
| 181 | + (inputnode, xfibres, [('bvecs', 'bvecs'), |
| 182 | + ('bvals', 'bvals')]), |
| 183 | + (inputnode, make_dyads, [('mask', 'mask')]) |
| 184 | + ]) |
| 185 | + |
| 186 | + mms = {} |
| 187 | + for k in ['thsamples', 'phsamples', 'fsamples']: |
| 188 | + mms[k] = merge_and_mean_parallel(k) |
| 189 | + wf.connect([ |
| 190 | + (slice_dwi, mms[k], [('out_index', 'inputnode.in_index')]), |
| 191 | + (inputnode, mms[k], [('mask', 'inputnode.in_reference')]), |
| 192 | + (xfibres, mms[k], [(k, 'inputnode.in_files')]), |
| 193 | + (mms[k], outputnode, [('outputnode.merged', k), |
| 194 | + ('outputnode.mean', 'mean_%s' % k)]) |
| 195 | + |
| 196 | + ]) |
| 197 | + |
| 198 | + # m_mdsamples = pe.Node(fsl.Merge(dimension="z"), |
| 199 | + # name="merge_mean_dsamples") |
| 200 | + wf.connect([ |
| 201 | + (mms['thsamples'], make_dyads, [('outputnode.merged', 'theta_vol')]), |
| 202 | + (mms['phsamples'], make_dyads, [('outputnode.merged', 'phi_vol')]), |
| 203 | + #(xfibres, m_mdsamples, [('mean_dsamples', 'in_files')]), |
| 204 | + (make_dyads, outputnode, [('dyads', 'dyads'), |
| 205 | + ('dispersion', 'dyads_disp')]) |
| 206 | + ]) |
| 207 | + return wf |
| 208 | + |
| 209 | + |
| 210 | +def merge_and_mean_parallel(name='mm'): |
| 211 | + inputnode = pe.Node(niu.IdentityInterface(fields=['in_files', |
| 212 | + 'in_reference', 'in_index']), name='inputnode') |
| 213 | + outputnode = pe.Node(niu.IdentityInterface(fields=['merged', 'mean']), |
| 214 | + name='outputnode') |
| 215 | + merge = pe.MapNode(misc.MergeROIs(), name='Merge', |
| 216 | + iterfield=['in_files']) |
| 217 | + mean = pe.MapNode(fsl.ImageMaths(op_string='-Tmean'), name='Mean', |
| 218 | + iterfield=['in_file']) |
| 219 | + |
| 220 | + wf = pe.Workflow(name=name) |
| 221 | + wf.connect([ |
| 222 | + (inputnode, merge, [(('in_files', transpose), 'in_files'), |
| 223 | + ('in_reference', 'in_reference'), |
| 224 | + ('in_index', 'in_index')]), |
| 225 | + (merge, mean, [('merged_file', 'in_file')]), |
| 226 | + (merge, outputnode, [('merged_file', 'merged')]), |
| 227 | + (mean, outputnode, [('out_file', 'mean')]) |
| 228 | + ]) |
| 229 | + return wf |
0 commit comments