Skip to content

Commit faa13a5

Browse files
committed
FIX: PEP8 - E502 the backslash is redundant between brackets
1 parent ba7f1bb commit faa13a5

File tree

15 files changed

+71
-71
lines changed

15 files changed

+71
-71
lines changed

nipype/interfaces/camino/dti.py

Lines changed: 35 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -262,29 +262,29 @@ def _gen_outfilename(self):
262262

263263

264264
class DTLUTGenInputSpec(StdOutCommandLineInputSpec):
265-
lrange = traits.List(traits.Float, desc='Index to one-tensor LUTs. This is the ratio L1/L3 and L2 / L3.' \
266-
'The LUT is square, with half the values calculated (because L2 / L3 cannot be less than L1 / L3 by definition).' \
267-
'The minimum must be >= 1. For comparison, a ratio L1 / L3 = 10 with L2 / L3 = 1 corresponds to an FA of 0.891, '\
268-
'and L1 / L3 = 15 with L2 / L3 = 1 corresponds to an FA of 0.929. The default range is 1 to 10.', \
265+
lrange = traits.List(traits.Float, desc='Index to one-tensor LUTs. This is the ratio L1/L3 and L2 / L3.'
266+
'The LUT is square, with half the values calculated (because L2 / L3 cannot be less than L1 / L3 by definition).'
267+
'The minimum must be >= 1. For comparison, a ratio L1 / L3 = 10 with L2 / L3 = 1 corresponds to an FA of 0.891, '
268+
'and L1 / L3 = 15 with L2 / L3 = 1 corresponds to an FA of 0.929. The default range is 1 to 10.',
269269
argstr='-lrange %s', minlen=2, maxlen=2, position=1,
270270
units='NA')
271271

272-
frange = traits.List(traits.Float, desc='Index to two-tensor LUTs. This is the fractional anisotropy \
273-
of the two tensors. The default is 0.3 to 0.94', \
272+
frange = traits.List(traits.Float, desc='Index to two-tensor LUTs. This is the fractional anisotropy'
273+
' of the two tensors. The default is 0.3 to 0.94',
274274
argstr='-frange %s', minlen=2, maxlen=2, position=1,
275275
units='NA')
276276

277277
step = traits.Float(argstr='-step %f', units='NA',
278-
desc='Distance between points in the LUT.' \
279-
'For example, if lrange is 1 to 10 and the step is 0.1, LUT entries will be computed ' \
280-
'at L1 / L3 = 1, 1.1, 1.2 ... 10.0 and at L2 / L3 = 1.0, 1.1 ... L1 / L3.' \
278+
desc='Distance between points in the LUT.'
279+
'For example, if lrange is 1 to 10 and the step is 0.1, LUT entries will be computed '
280+
'at L1 / L3 = 1, 1.1, 1.2 ... 10.0 and at L2 / L3 = 1.0, 1.1 ... L1 / L3.'
281281
'For single tensor LUTs, the default step is 0.2, for two-tensor LUTs it is 0.02.')
282282

283283
samples = traits.Int(argstr='-samples %d', units='NA',
284284
desc='The number of synthetic measurements to generate at each point in the LUT. The default is 2000.')
285285

286286
snr = traits.Float(argstr='-snr %f', units='NA',
287-
desc='The signal to noise ratio of the unweighted (q = 0) measurements.'\
287+
desc='The signal to noise ratio of the unweighted (q = 0) measurements.'
288288
'This should match the SNR (in white matter) of the images that the LUTs are used with.')
289289

290290
bingham = traits.Bool(argstr='-bingham', desc="Compute a LUT for the Bingham PDF. This is the default.")
@@ -351,27 +351,27 @@ class PicoPDFsInputSpec(StdOutCommandLineInputSpec):
351351
argstr='-inputmodel %s', position=2, desc='input model type', usedefault=True)
352352

353353
luts = InputMultiPath(File(exists=True), argstr='-luts %s', mandatory=True,
354-
desc='Files containing the lookup tables.'\
355-
'For tensor data, one lut must be specified for each type of inversion used in the image (one-tensor, two-tensor, three-tensor).'\
356-
'For pds, the number of LUTs must match -numpds (it is acceptable to use the same LUT several times - see example, above).'\
354+
desc='Files containing the lookup tables.'
355+
'For tensor data, one lut must be specified for each type of inversion used in the image (one-tensor, two-tensor, three-tensor).'
356+
'For pds, the number of LUTs must match -numpds (it is acceptable to use the same LUT several times - see example, above).'
357357
'These LUTs may be generated with dtlutgen.')
358358

359359
pdf = traits.Enum('bingham', 'watson', 'acg',
360-
argstr='-pdf %s', position=4, desc=' Specifies the PDF to use. There are three choices:'\
361-
'watson - The Watson distribution. This distribution is rotationally symmetric.'\
362-
'bingham - The Bingham distributionn, which allows elliptical probability density contours.'\
360+
argstr='-pdf %s', position=4, desc=' Specifies the PDF to use. There are three choices:'
361+
'watson - The Watson distribution. This distribution is rotationally symmetric.'
362+
'bingham - The Bingham distributionn, which allows elliptical probability density contours.'
363363
'acg - The Angular Central Gaussian distribution, which also allows elliptical probability density contours', usedefault=True)
364364

365365
directmap = traits.Bool(argstr='-directmap', desc="Only applicable when using pds as the inputmodel. Use direct mapping between the eigenvalues and the distribution parameters instead of the log of the eigenvalues.")
366366

367367
maxcomponents = traits.Int(argstr='-maxcomponents %d', units='NA',
368-
desc='The maximum number of tensor components in a voxel (default 2) for multitensor data.'\
368+
desc='The maximum number of tensor components in a voxel (default 2) for multitensor data.'
369369
'Currently, only the default is supported, but future releases may allow the input of three-tensor data using this option.')
370370

371371
numpds = traits.Int(argstr='-numpds %d', units='NA',
372-
desc='The maximum number of PDs in a voxel (default 3) for PD data.' \
373-
'This option determines the size of the input and output voxels.' \
374-
'This means that the data file may be large enough to accomodate three or more PDs,'\
372+
desc='The maximum number of PDs in a voxel (default 3) for PD data.'
373+
'This option determines the size of the input and output voxels.'
374+
'This means that the data file may be large enough to accomodate three or more PDs,'
375375
'but does not mean that any of the voxels are classified as containing three or more PDs.')
376376

377377

@@ -835,19 +835,19 @@ class ComputeMeanDiffusivityInputSpec(CommandLineInputSpec):
835835

836836
inputmodel = traits.Enum('dt', 'twotensor', 'threetensor',
837837
argstr='-inputmodel %s',
838-
desc='Specifies the model that the input tensor data contains parameters for.' \
839-
'Possible model types are: "dt" (diffusion-tensor data), "twotensor" (two-tensor data), '\
840-
'"threetensor" (three-tensor data). By default, the program assumes that the input data '\
838+
desc='Specifies the model that the input tensor data contains parameters for.'
839+
'Possible model types are: "dt" (diffusion-tensor data), "twotensor" (two-tensor data), '
840+
'"threetensor" (three-tensor data). By default, the program assumes that the input data '
841841
'contains a single diffusion tensor in each voxel.')
842842

843843
inputdatatype = traits.Enum('char', 'short', 'int', 'long', 'float', 'double',
844844
argstr='-inputdatatype %s',
845-
desc='Specifies the data type of the input file. The data type can be any of the' \
845+
desc='Specifies the data type of the input file. The data type can be any of the'
846846
'following strings: "char", "short", "int", "long", "float" or "double".')
847847

848848
outputdatatype = traits.Enum('char', 'short', 'int', 'long', 'float', 'double',
849849
argstr='-outputdatatype %s',
850-
desc='Specifies the data type of the output data. The data type can be any of the' \
850+
desc='Specifies the data type of the output data. The data type can be any of the'
851851
'following strings: "char", "short", "int", "long", "float" or "double".')
852852

853853

@@ -891,19 +891,19 @@ class ComputeFractionalAnisotropyInputSpec(StdOutCommandLineInputSpec):
891891

892892
inputmodel = traits.Enum('dt', 'twotensor', 'threetensor', 'multitensor',
893893
argstr='-inputmodel %s',
894-
desc='Specifies the model that the input tensor data contains parameters for.' \
895-
'Possible model types are: "dt" (diffusion-tensor data), "twotensor" (two-tensor data), '\
896-
'"threetensor" (three-tensor data). By default, the program assumes that the input data '\
894+
desc='Specifies the model that the input tensor data contains parameters for.'
895+
'Possible model types are: "dt" (diffusion-tensor data), "twotensor" (two-tensor data), '
896+
'"threetensor" (three-tensor data). By default, the program assumes that the input data '
897897
'contains a single diffusion tensor in each voxel.')
898898

899899
inputdatatype = traits.Enum('char', 'short', 'int', 'long', 'float', 'double',
900900
argstr='-inputdatatype %s',
901-
desc='Specifies the data type of the input file. The data type can be any of the' \
901+
desc='Specifies the data type of the input file. The data type can be any of the'
902902
'following strings: "char", "short", "int", "long", "float" or "double".')
903903

904904
outputdatatype = traits.Enum('char', 'short', 'int', 'long', 'float', 'double',
905905
argstr='-outputdatatype %s',
906-
desc='Specifies the data type of the output data. The data type can be any of the' \
906+
desc='Specifies the data type of the output data. The data type can be any of the'
907907
'following strings: "char", "short", "int", "long", "float" or "double".')
908908

909909

@@ -953,19 +953,19 @@ class ComputeTensorTraceInputSpec(StdOutCommandLineInputSpec):
953953

954954
inputmodel = traits.Enum('dt', 'twotensor', 'threetensor', 'multitensor',
955955
argstr='-inputmodel %s',
956-
desc='Specifies the model that the input tensor data contains parameters for.' \
957-
'Possible model types are: "dt" (diffusion-tensor data), "twotensor" (two-tensor data), '\
958-
'"threetensor" (three-tensor data). By default, the program assumes that the input data '\
956+
desc='Specifies the model that the input tensor data contains parameters for.'
957+
'Possible model types are: "dt" (diffusion-tensor data), "twotensor" (two-tensor data), '
958+
'"threetensor" (three-tensor data). By default, the program assumes that the input data '
959959
'contains a single diffusion tensor in each voxel.')
960960

961961
inputdatatype = traits.Enum('char', 'short', 'int', 'long', 'float', 'double',
962962
argstr='-inputdatatype %s',
963-
desc='Specifies the data type of the input file. The data type can be any of the' \
963+
desc='Specifies the data type of the input file. The data type can be any of the'
964964
'following strings: "char", "short", "int", "long", "float" or "double".')
965965

966966
outputdatatype = traits.Enum('char', 'short', 'int', 'long', 'float', 'double',
967967
argstr='-outputdatatype %s',
968-
desc='Specifies the data type of the output data. The data type can be any of the' \
968+
desc='Specifies the data type of the output data. The data type can be any of the'
969969
'following strings: "char", "short", "int", "long", "float" or "double".')
970970

971971

nipype/interfaces/cmtk/nbs.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ class NetworkBasedStatisticInputSpec(BaseInterfaceInputSpec):
4343
number_of_permutations = traits.Int(1000, usedefault=True, desc='Number of permutations to perform')
4444
threshold = traits.Float(3, usedefault=True, desc='T-statistic threshold')
4545
t_tail = traits.Enum('left', 'right', 'both', usedefault=True, desc='Can be one of "left", "right", or "both"')
46-
edge_key = traits.Str('number_of_fibers', usedefault=True, desc='Usually "number_of_fibers, "fiber_length_mean", "fiber_length_std" for matrices made with CMTK' \
46+
edge_key = traits.Str('number_of_fibers', usedefault=True, desc='Usually "number_of_fibers, "fiber_length_mean", "fiber_length_std" for matrices made with CMTK'
4747
'Sometimes "weight" or "value" for functional networks.')
4848
out_nbs_network = File(desc='Output network with edges identified by the NBS')
4949
out_nbs_pval_network = File(desc='Output network with p-values to weight the edges identified by the NBS')

nipype/interfaces/cmtk/nx.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -505,7 +505,7 @@ def _gen_outfilename(self, name, ext):
505505

506506
class AverageNetworksInputSpec(BaseInterfaceInputSpec):
507507
in_files = InputMultiPath(File(exists=True), mandatory=True, desc='Networks for a group of subjects')
508-
resolution_network_file = File(exists=True, desc='Parcellation files from Connectome Mapping Toolkit. This is not necessary' \
508+
resolution_network_file = File(exists=True, desc='Parcellation files from Connectome Mapping Toolkit. This is not necessary'
509509
', but if included, the interface will output the statistical maps as networkx graphs.')
510510
group_id = traits.Str('group1', usedefault=True, desc='ID for group')
511511
out_gpickled_groupavg = File(desc='Average network saved as a NetworkX .pck')

nipype/interfaces/freesurfer/utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -814,7 +814,7 @@ class MRIsConvertInputSpec(FSTraitedSpec):
814814
# Not really sure why the ./ is necessary but the module fails without it
815815

816816
out_datatype = traits.Enum("ico", "tri", "stl", "vtk", "gii", "mgh", "mgz", mandatory=True,
817-
desc="These file formats are supported: ASCII: .asc" \
817+
desc="These file formats are supported: ASCII: .asc"
818818
"ICO: .ico, .tri GEO: .geo STL: .stl VTK: .vtk GIFTI: .gii MGH surface-encoded 'volume': .mgh, .mgz")
819819

820820

nipype/interfaces/fsl/tests/test_dti.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -285,11 +285,11 @@ def test_Randomise_parallel():
285285
'TFCE_height_param': ('--tfce_H=0.11', 0.11),
286286
'TFCE_extent_param': ('--tfce_E=0.50', 0.50),
287287
'TFCE_connectivity': ('--tfce_C=0.30', 0.30),
288-
'list_num_voxel_EVs_pos': ('--vxl=' \
289-
+ repr([1, 2, 3, 4]),
288+
'list_num_voxel_EVs_pos': ('--vxl=' +
289+
repr([1, 2, 3, 4]),
290290
repr([1, 2, 3, 4])),
291-
'list_img_voxel_EVs': ('--vxf=' \
292-
+ repr([6, 7, 8, 9, 3]),
291+
'list_img_voxel_EVs': ('--vxf=' +
292+
repr([6, 7, 8, 9, 3]),
293293
repr([6, 7, 8, 9, 3]))}
294294

295295
for name, settings in list(opt_map.items()):

nipype/interfaces/meshfix.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ class MeshFixInputSpec(CommandLineInputSpec):
3838

3939
uniform_remeshing_steps = traits.Int(argstr='-u %d', requires=['uniform_remeshing_vertices'], desc="Number of steps for uniform remeshing of the whole mesh")
4040

41-
uniform_remeshing_vertices = traits.Int(argstr='--vertices %d', requires=['uniform_remeshing_steps'], desc="Constrains the number of vertices." \
41+
uniform_remeshing_vertices = traits.Int(argstr='--vertices %d', requires=['uniform_remeshing_steps'], desc="Constrains the number of vertices."
4242
"Must be used with uniform_remeshing_steps")
4343

4444
laplacian_smoothing_steps = traits.Int(argstr='--smooth %d', desc="The number of laplacian smoothing steps to apply")
@@ -48,23 +48,23 @@ class MeshFixInputSpec(CommandLineInputSpec):
4848
# Cutting, decoupling, dilation
4949
cut_outer = traits.Int(argstr='--cut-outer %d', desc="Remove triangles of 1st that are outside of the 2nd shell.")
5050
cut_inner = traits.Int(argstr='--cut-inner %d', desc="Remove triangles of 1st that are inside of the 2nd shell. Dilate 2nd by N; Fill holes and keep only 1st afterwards.")
51-
decouple_inin = traits.Int(argstr='--decouple-inin %d', desc="Treat 1st file as inner, 2nd file as outer component." \
51+
decouple_inin = traits.Int(argstr='--decouple-inin %d', desc="Treat 1st file as inner, 2nd file as outer component."
5252
"Resolve overlaps by moving inners triangles inwards. Constrain the min distance between the components > d.")
53-
decouple_outin = traits.Int(argstr='--decouple-outin %d', desc="Treat 1st file as outer, 2nd file as inner component." \
53+
decouple_outin = traits.Int(argstr='--decouple-outin %d', desc="Treat 1st file as outer, 2nd file as inner component."
5454
"Resolve overlaps by moving outers triangles inwards. Constrain the min distance between the components > d.")
55-
decouple_outout = traits.Int(argstr='--decouple-outout %d', desc="Treat 1st file as outer, 2nd file as inner component." \
55+
decouple_outout = traits.Int(argstr='--decouple-outout %d', desc="Treat 1st file as outer, 2nd file as inner component."
5656
"Resolve overlaps by moving outers triangles outwards. Constrain the min distance between the components > d.")
5757

5858
finetuning_inwards = traits.Bool(argstr='--fineTuneIn ', requires=['finetuning_distance', 'finetuning_substeps'])
5959
finetuning_outwards = traits.Bool(argstr='--fineTuneIn ', requires=['finetuning_distance', 'finetuning_substeps'], xor=['finetuning_inwards'],
6060
desc='Similar to finetuning_inwards, but ensures minimal distance in the other direction')
61-
finetuning_distance = traits.Float(argstr='%f', requires=['finetuning_substeps'], desc="Used to fine-tune the minimal distance between surfaces." \
61+
finetuning_distance = traits.Float(argstr='%f', requires=['finetuning_substeps'], desc="Used to fine-tune the minimal distance between surfaces."
6262
"A minimal distance d is ensured, and reached in n substeps. When using the surfaces for subsequent volume meshing by gmsh, this step prevent too flat tetrahedra2)")
63-
finetuning_substeps = traits.Int(argstr='%d', requires=['finetuning_distance'], desc="Used to fine-tune the minimal distance between surfaces." \
63+
finetuning_substeps = traits.Int(argstr='%d', requires=['finetuning_distance'], desc="Used to fine-tune the minimal distance between surfaces."
6464
"A minimal distance d is ensured, and reached in n substeps. When using the surfaces for subsequent volume meshing by gmsh, this step prevent too flat tetrahedra2)")
6565

6666
dilation = traits.Int(argstr='--dilate %d', desc="Dilate the surface by d. d < 0 means shrinking.")
67-
set_intersections_to_one = traits.Bool(argstr='--intersect', desc="If the mesh contains intersections, return value = 1." \
67+
set_intersections_to_one = traits.Bool(argstr='--intersect', desc="If the mesh contains intersections, return value = 1."
6868
"If saved in gmsh format, intersections will be highlighted.")
6969

7070
in_file1 = File(exists=True, argstr="%s", position=1, mandatory=True)

0 commit comments

Comments
 (0)