|
| 1 | +--- |
| 2 | +description: 'Server-side validation with Zod across APIs, Schedules and Queues' |
| 3 | +tags: |
| 4 | + - API |
| 5 | + - Realtime & Websockets |
| 6 | +languages: |
| 7 | + - typescript |
| 8 | + - javascript |
| 9 | +published_at: 2025-03-24 |
| 10 | +updated_at: 2025-03-24 |
| 11 | +--- |
| 12 | + |
| 13 | +# A Unified Approach to validation across APIs, Queues & Jobs with Zod |
| 14 | + |
| 15 | +Validation can help users enter data in the correct format when interacting with front-end applications. This prevents them from providing empty values, invalid emails, or other common input mistakes. |
| 16 | + |
| 17 | +Once data leaves the browser we still need to ensure that the data remains valid: |
| 18 | + |
| 19 | +- What happens when services communicate asynchronously? |
| 20 | +- How do we prevent bad data from breaking downstream systems? |
| 21 | + |
| 22 | +Cloud applications don’t just receive requests from web forms. Data comes from APIs, message queues, scheduled tasks, or WebSockets—each introducing the risk of incomplete, malformed, or even malicious data. |
| 23 | + |
| 24 | +Server-side validation is critical—not just for security, but for maintaining data integrity across the system. |
| 25 | + |
| 26 | +With [Zod](https://zod.dev/), we can define strict validation rules once and enforce them across APIs, events, and background jobs. |
| 27 | + |
| 28 | +## Defining a validation schema with Zod |
| 29 | + |
| 30 | +A Zod schema acts as a contract for how data should look. The example below defines a `userSchema`, which establishes clear rules for incoming user data. |
| 31 | + |
| 32 | +```ts |
| 33 | +import { z } from 'zod' |
| 34 | + |
| 35 | +const userSchema = z.object({ |
| 36 | + name: z.string().min(2, 'Name must be at least 2 characters'), |
| 37 | + email: z.string().email('Invalid email format'), |
| 38 | + age: z.number().min(18, 'Must be at least 18 years old'), |
| 39 | +}) |
| 40 | +``` |
| 41 | + |
| 42 | + |
| 43 | +This schema ensures that any user data passed into the application follows these strict rules. |
| 44 | + |
| 45 | +## Validating data |
| 46 | + |
| 47 | +Once the schema is defined, we can use `.safeParse()` to validate incoming data before using it in our application. |
| 48 | + |
| 49 | +```ts |
| 50 | +const validUser = userSchema.safeParse({ |
| 51 | + name: 'Alice', |
| 52 | + |
| 53 | + age: 25, |
| 54 | +}) |
| 55 | +``` |
| 56 | + |
| 57 | +### What happens here? |
| 58 | + |
| 59 | +- The `safeParse()` method checks if the input matches the `userSchema`. |
| 60 | +- If validation **passes**, the `validUser` object will contain the parsed data. |
| 61 | +- If validation **fails**, Zod returns an object containing detailed error messages instead of throwing an exception. |
| 62 | + |
| 63 | +<Note> |
| 64 | + Alternatively, use .parse(), which throws an error that can be handled |
| 65 | + appropriately. |
| 66 | +</Note>{' '} |
| 67 | + |
| 68 | +## Applying validation to an API endpoint |
| 69 | + |
| 70 | +Now, let’s use our schema apply server-side validation to an API. |
| 71 | + |
| 72 | +The following API route: |
| 73 | + |
| 74 | +1. Extracts the request body from the incoming request |
| 75 | +2. Validates the data against `userSchema` |
| 76 | +3. Returns a 400 error if validation fails |
| 77 | + |
| 78 | +```ts |
| 79 | +import { api } from '@nitric/sdk' |
| 80 | +import { z } from 'zod' |
| 81 | + |
| 82 | +const userSchema = z.object({ |
| 83 | + name: z.string().min(2, 'Name must be at least 2 characters'), |
| 84 | + email: z.string().email('Invalid email format'), |
| 85 | + age: z.number().min(18, 'Must be at least 18 years old'), |
| 86 | +}) |
| 87 | + |
| 88 | +const usersApi = api('users') |
| 89 | + |
| 90 | +usersApi.post('/', async (ctx) => { |
| 91 | + const result = userSchema.safeParse(ctx.req.json()) // Validate request |
| 92 | + if (result.success) { |
| 93 | + ctx.res.json({ message: 'User validated.', result }) |
| 94 | + } else { |
| 95 | + ctx.res.status = 400 |
| 96 | + ctx.res.json(result.error) |
| 97 | + } |
| 98 | +}) |
| 99 | +``` |
| 100 | + |
| 101 | +### Why this matters: |
| 102 | + |
| 103 | +- If the request body is **valid**, the API processes the request as usual. |
| 104 | +- If **invalid**, the response includes detailed validation errors, ensuring that only properly formatted data is accepted. |
| 105 | + |
| 106 | +### Example invalid request: |
| 107 | + |
| 108 | +```json |
| 109 | +{ |
| 110 | + "name": "test", |
| 111 | + |
| 112 | + "age": 12 |
| 113 | +} |
| 114 | +``` |
| 115 | + |
| 116 | +### Expected response: |
| 117 | + |
| 118 | +```json |
| 119 | +{ |
| 120 | + "issues": [ |
| 121 | + { |
| 122 | + "code": "too_small", |
| 123 | + "minimum": 18, |
| 124 | + "type": "number", |
| 125 | + "inclusive": true, |
| 126 | + "exact": false, |
| 127 | + "message": "Must be at least 18 years old", |
| 128 | + "path": ["age"] |
| 129 | + } |
| 130 | + ], |
| 131 | + "name": "ZodError" |
| 132 | +} |
| 133 | +``` |
| 134 | + |
| 135 | +APIs aren’t the only place validation matters. Cloud applications move data through multiple services—including message queues and scheduled tasks. |
| 136 | + |
| 137 | +## Validating and processing messages in a queue |
| 138 | + |
| 139 | +If we don’t validate messages before processing them, bad data can propagate throughout the system. |
| 140 | + |
| 141 | +Let’s say we have an `orders` queue where payment services publish transaction messages. To maintain integrity, we must validate each order before processing it. |
| 142 | + |
| 143 | +### Defining the validation schema |
| 144 | + |
| 145 | +```ts |
| 146 | +import { api, queue, schedule } from '@nitric/sdk' |
| 147 | +import { z } from 'zod' |
| 148 | + |
| 149 | +const orderSchema = z.object({ |
| 150 | + orderId: z.string().uuid(), |
| 151 | + amount: z.number().positive(), |
| 152 | + userId: z.string().min(1), |
| 153 | +}) |
| 154 | +``` |
| 155 | + |
| 156 | +### Key Rules: |
| 157 | + |
| 158 | +- `orderId` must be a valid UUID |
| 159 | +- `amount` must be a positive number |
| 160 | +- `userId` must be a string with at least one character |
| 161 | + |
| 162 | +This schema ensures that invalid orders never enter the system. |
| 163 | + |
| 164 | +## Applying validation in a queue handler |
| 165 | + |
| 166 | +Next, we define an API that accepts orders and enqueues them only if they pass validation. |
| 167 | + |
| 168 | +```ts |
| 169 | +const orderApi = api('orders') |
| 170 | +const ordersQueue = queue('orders').allow('dequeue', 'enqueue') |
| 171 | + |
| 172 | +const orderSchema = z.object({ |
| 173 | + orderId: z.string().uuid(), |
| 174 | + amount: z.number().positive(), |
| 175 | + userId: z.string().min(1), |
| 176 | +}) |
| 177 | + |
| 178 | +orderApi.post('/', async (ctx) => { |
| 179 | + const result = orderSchema.safeParse(ctx.req.json()) |
| 180 | + if (result.success) { |
| 181 | + await ordersQueue.enqueue(result.data) |
| 182 | + ctx.res.json({ |
| 183 | + message: `Adding order with id: ${result.data.orderId} to queue`, |
| 184 | + }) |
| 185 | + } else { |
| 186 | + ctx.res.status = 400 |
| 187 | + ctx.res.json(result.error) |
| 188 | + } |
| 189 | +}) |
| 190 | +``` |
| 191 | + |
| 192 | +### Breakdown: |
| 193 | + |
| 194 | +- The request body is validated against `orderSchema` |
| 195 | +- If the data is valid, it gets enqueued for processing |
| 196 | +- If invalid, a `400` error response is returned |
| 197 | + |
| 198 | +This prevents bad data from ever reaching the queue. |
| 199 | + |
| 200 | +## Processing the Queue |
| 201 | + |
| 202 | +To ensure only valid data is processed, we apply validation again when dequeuing orders. |
| 203 | + |
| 204 | +```ts |
| 205 | +schedule('process-transactions').every('5 minutes', async (ctx) => { |
| 206 | + console.log(`Processing at ${new Date().toLocaleString()}`) |
| 207 | + |
| 208 | + const tasks = await ordersQueue.dequeue() |
| 209 | + |
| 210 | + await Promise.all( |
| 211 | + tasks.map(async (task) => { |
| 212 | + const result = orderSchema.safeParse(task.payload) |
| 213 | + |
| 214 | + if (result.success) { |
| 215 | + console.log( |
| 216 | + `Processing order ${result.data.orderId} for user ${result.data.userId}`, |
| 217 | + ) |
| 218 | + await task.complete() |
| 219 | + } else { |
| 220 | + console.error(`Invalid order message:`, result.error) |
| 221 | + } |
| 222 | + }), |
| 223 | + ) |
| 224 | +}) |
| 225 | +``` |
| 226 | + |
| 227 | +### What This Does: |
| 228 | + |
| 229 | +- Every **5 minutes**, the function processes all messages in the queue |
| 230 | +- Each message is validated before being processed |
| 231 | +- Invalid messages are logged and ignored to prevent errors in downstream services |
| 232 | + |
| 233 | +## Conclusion |
| 234 | + |
| 235 | +Validation isn't just about catching errors, it’s about building confidence in how data moves through an application. |
| 236 | + |
| 237 | +By integrating Zod into a Nitric application, we: |
| 238 | + |
| 239 | +- Ensure APIs only accept well-formed requests |
| 240 | +- Prevent malformed messages from breaking queue processing |
| 241 | +- Guarantee background jobs run with predictable data |
| 242 | +- Validate real-time connections before they interact with the system |
| 243 | + |
| 244 | +Now that you've established server-side validation, the next step is handling errors effectively, some errors and failures will require retries, while others should be logged and flagged for manual review. |
0 commit comments