@@ -1528,7 +1528,7 @@ @Article{Jin_PhysChemChemPhys_2021_v23_p21470
15281528@Article {Bu_SolarEnergyMaterialsandSolarCells_2021_v232_p111346 ,
15291529 author = { Min Bu and Wenshuo Liang and Guimin Lu and Jianguo Yu} ,
15301530 title = { {Local structure elucidation and properties prediction on
1531- KCl{\textendash }CaCl2 molten salt: A deep potential molecular dynamics
1531+ KCl{- }CaCl2 molten salt: A deep potential molecular dynamics
15321532 study}} ,
15331533 journal = { Solar Energy Materials and Solar Cells} ,
15341534 year = 2021 ,
@@ -1828,7 +1828,7 @@ @Article{Zhao_Ionics_2021_v27_p2079
18281828
18291829@Article {Jiang_ChinesePhysB_2021_v30_p050706 ,
18301830 author = { Wanrun Jiang and Yuzhi Zhang and Linfeng Zhang and Han Wang} ,
1831- title = { {Accurate Deep Potential model for the Al{\textendash }Cu{\textendash }Mg
1831+ title = { {Accurate Deep Potential model for the Al{- }Cu{- }Mg
18321832 alloy in the full concentration space*}} ,
18331833 journal = { Chinese Phys. B} ,
18341834 year = 2021 ,
@@ -1841,7 +1841,7 @@ @Article{Jiang_ChinesePhysB_2021_v30_p050706
18411841 of matter via atomistic simulation. This has been particularly
18421842 challenging for multi-component alloy systems due to the complex and
18431843 non-linear nature of the associated PES. In this work, we develop an
1844- accurate PES model for the Al{\textendash }Cu{\textendash }Mg system by
1844+ accurate PES model for the Al{- }Cu{- }Mg system by
18451845 employing deep potential (DP), a neural network based representation
18461846 of the PES, and DP generator (DP-GEN), a concurrent-learning scheme
18471847 that generates a compact set of <jats:italic>ab initio</jats:italic>
@@ -1852,7 +1852,7 @@ @Article{Jiang_ChinesePhysB_2021_v30_p050706
18521852 interstitial energy, vacancy and surface formation energy, as well as
18531853 elastic moduli. Extensive benchmark shows that the DP model is ready
18541854 and will be useful for atomistic modeling of the
1855- Al{\textendash }Cu{\textendash }Mg system within the full range of
1855+ Al{- }Cu{- }Mg system within the full range of
18561856 concentration.</jats:p>} ,
18571857 doi = { 10.1088/1674-1056/abf134} ,
18581858}
@@ -2272,7 +2272,7 @@ @article{Liu_JVacuumSciTech_2022_v40_p023205
22722272
22732273@Article {Wang_ModellingSimulMaterSciEng_2022_v30_p025003 ,
22742274 author = { YiNan Wang and LinFeng Zhang and Ben Xu and XiaoYang Wang and Han Wang} ,
2275- title = { {A generalizable machine learning potential of Ag{\textendash }Au
2275+ title = { {A generalizable machine learning potential of Ag{- }Au
22762276 nanoalloys and its application to surface reconstruction, segregation
22772277 and diffusion}} ,
22782278 journal = { Modelling Simul. Mater. Sci. Eng.} ,
@@ -2281,17 +2281,17 @@ @Article{Wang_ModellingSimulMaterSciEng_2022_v30_p025003
22812281 issue = 2 ,
22822282 pages = 025003 ,
22832283 annote = { <jats:title>Abstract</jats:title> <jats:p>Owing to the
2284- excellent catalytic properties of Ag{\textendash }Au binary nanoalloys,
2285- nanostructured Ag{\textendash }Au, such as Ag{\textendash }Au
2284+ excellent catalytic properties of Ag{- }Au binary nanoalloys,
2285+ nanostructured Ag{- }Au, such as Ag{- }Au
22862286 nanoparticles and nanopillars, has been under intense investigation.
2287- To achieve high accuracy in molecular simulations of Ag{\textendash }Au
2287+ To achieve high accuracy in molecular simulations of Ag{- }Au
22882288 nanoalloys, the surface properties must be modeled with first-
22892289 principles precision. In this work, we constructed a generalizable
2290- machine learning interatomic potential for Ag{\textendash }Au
2290+ machine learning interatomic potential for Ag{- }Au
22912291 nanoalloys based on deep neural networks trained from a database
22922292 constructed with first-principles calculations. This potential is
22932293 highlighted by the accurate prediction of Au (111) surface
2294- reconstruction and the segregation of Au toward the Ag{\textendash }Au
2294+ reconstruction and the segregation of Au toward the Ag{- }Au
22952295 nanoalloy surface, where the empirical force field (EFF) failed in
22962296 both cases. Moreover, regarding the adsorption and diffusion of
22972297 adatoms on surfaces, the overall performance of our potential is
@@ -2300,7 +2300,7 @@ @Article{Wang_ModellingSimulMaterSciEng_2022_v30_p025003
23002300 surface configurations is explicitly included in the training
23012301 database; therefore, the reported potential is expected to have a
23022302 strong generalization ability to a wide range of properties and to
2303- play a key role in investigating nanostructured Ag{\textendash }Au
2303+ play a key role in investigating nanostructured Ag{- }Au
23042304 evolution, where accurate descriptions of free surfaces are
23052305 necessary.</jats:p>} ,
23062306 doi = { 10.1088/1361-651X/ac4002} ,
@@ -2321,7 +2321,7 @@ @Article{Xie_JPhysCondensMatter_2022_v34_p075402
23212321 author = { Kun Xie and Chong Qiao and Hong Shen and Riyi Yang and Ming Xu and
23222322 Chao Zhang and Yuxiang Zheng and Rongjun Zhang and Liangyao Chen and
23232323 Kai-Ming Ho and Cai-Zhuang Wang and Songyou Wang} ,
2324- title = { {Neural network potential for Zr{\textendash }Rh system by machine
2324+ title = { {Neural network potential for Zr{- }Rh system by machine
23252325 learning}} ,
23262326 journal = { J. Phys. Condens. Matter} ,
23272327 year = 2022 ,
0 commit comments