|
| 1 | +# Copyright 2024 Advanced Micro Devices, Inc. |
| 2 | +# |
| 3 | +# Licensed under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +# See https://llvm.org/LICENSE.txt for license information. |
| 5 | +# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | + |
| 7 | +import torch |
| 8 | +import pytest |
| 9 | +from pathlib import Path |
| 10 | +from sharktank.utils._helpers import run_iree_vs_torch_fx, validate_and_get_irpa_path |
| 11 | +from sharktank.layers import LinearLayer, RMSNormLayer |
| 12 | +from sharktank.types import Dataset, Theta |
| 13 | +from sharktank.layers.configs import LlamaModelConfig |
| 14 | +from sharktank.utils._iree_compile_flags_config import LLM_HIP_COMPILE_FLAGS |
| 15 | +from sharktank.utils.testing import is_hip_condition |
| 16 | + |
| 17 | + |
| 18 | +class OutputLMHead(torch.nn.Module): |
| 19 | + """Standalone output_lm_head block extracted from PagedLlmModelV1""" |
| 20 | + |
| 21 | + def __init__(self, theta: Theta, config: LlamaModelConfig): |
| 22 | + super().__init__() |
| 23 | + self.config = config |
| 24 | + self.hp = config.hp |
| 25 | + |
| 26 | + # Output normalization layer |
| 27 | + self.output_norm = RMSNormLayer( |
| 28 | + theta("output_norm"), epsilon=self.hp.attention_layer_norm_rms_epsilon |
| 29 | + ) |
| 30 | + |
| 31 | + # Output linear layer (language model head) |
| 32 | + self.output_lm_head = LinearLayer( |
| 33 | + theta("output"), |
| 34 | + matmul_kernel=config.matmul_kernel, |
| 35 | + ) |
| 36 | + |
| 37 | + def forward(self, h: torch.Tensor) -> torch.Tensor: |
| 38 | + # Apply normalization |
| 39 | + h_norm = self.output_norm(h) # output fp16 && wieghts float32 |
| 40 | + |
| 41 | + # Apply final linear transformation |
| 42 | + logits = self.output_lm_head(h_norm) # output && weights fp16 |
| 43 | + |
| 44 | + return logits |
| 45 | + |
| 46 | + |
| 47 | +def create_output_lm_head_from_irpa( |
| 48 | + irpa_path: str, |
| 49 | +) -> tuple[OutputLMHead, torch.Tensor]: |
| 50 | + """ |
| 51 | + Create OutputLMHead module from IRPA file and generate sample input. |
| 52 | +
|
| 53 | + Args: |
| 54 | + irpa_path: Path to the IRPA file |
| 55 | +
|
| 56 | + Returns: |
| 57 | + Tuple of (OutputLMHead module, sample input tensor) |
| 58 | + """ |
| 59 | + # Load dataset from IRPA file |
| 60 | + dataset = Dataset.load(Path(irpa_path)) |
| 61 | + |
| 62 | + # Create model config from dataset |
| 63 | + llama_config = LlamaModelConfig.from_dataset( |
| 64 | + dataset=dataset, |
| 65 | + attention_kernel="torch", |
| 66 | + matmul_kernel="sharktank.asm;*", |
| 67 | + activation_dtype=torch.float16, |
| 68 | + ) |
| 69 | + |
| 70 | + # Create the output LM head module |
| 71 | + output_lm_head = OutputLMHead(dataset.root_theta, llama_config) |
| 72 | + |
| 73 | + # Generate sample input tensor matching expected dimensions |
| 74 | + # Typical shape: [batch_size, seq_len, hidden_dim] |
| 75 | + # TODO: Check if there are other more suitable sizes to test. |
| 76 | + batch_size = 2 |
| 77 | + seq_len = 8 |
| 78 | + hidden_dim = ( |
| 79 | + llama_config.hp.embedding_length |
| 80 | + ) # Use embedding_length instead of model_dim |
| 81 | + |
| 82 | + sample_input = torch.randn( |
| 83 | + batch_size, seq_len, hidden_dim, dtype=llama_config.activation_dtype |
| 84 | + ) |
| 85 | + |
| 86 | + return output_lm_head, sample_input |
| 87 | + |
| 88 | + |
| 89 | +# Test cases |
| 90 | +@pytest.mark.skipif(f"not ({is_hip_condition})", reason="Test requires HIP device") |
| 91 | +@pytest.mark.parametrize("dtype,atol", [(torch.float16, 1e-4)]) |
| 92 | +def test_output_lm_head_iree_vs_eager(request, dtype, atol): |
| 93 | + """ |
| 94 | + Test OutputLMHead module comparing IREE vs PyTorch eager execution. |
| 95 | +
|
| 96 | + Use --parameters command line argument to specify the IRPA file path. |
| 97 | + """ |
| 98 | + # Validate and get IRPA path |
| 99 | + irpa_path = validate_and_get_irpa_path(request) |
| 100 | + |
| 101 | + try: |
| 102 | + # Create module and sample input from IRPA |
| 103 | + module, sample_input = create_output_lm_head_from_irpa(irpa_path) |
| 104 | + except Exception as e: |
| 105 | + pytest.skip(f"Failed to load model from IRPA: {e}") |
| 106 | + |
| 107 | + # Convert to desired dtype |
| 108 | + # module = module.to(dtype) |
| 109 | + sample_input = sample_input.to(dtype) |
| 110 | + |
| 111 | + # Run IREE vs torch comparison |
| 112 | + run_iree_vs_torch_fx( |
| 113 | + module, |
| 114 | + input_args=(sample_input,), |
| 115 | + atol=atol, |
| 116 | + rtol=0, |
| 117 | + compile_flags=LLM_HIP_COMPILE_FLAGS, |
| 118 | + parameters_path=irpa_path, |
| 119 | + ) |
| 120 | + |
| 121 | + |
| 122 | +@pytest.mark.skipif(f"not ({is_hip_condition})", reason="Test requires HIP device") |
| 123 | +def test_output_lm_head_mock(): |
| 124 | + """ |
| 125 | + Mock test with synthetic weights for OutputLMHead functionality. |
| 126 | + Adding this test to work without requiring an IRPA file. |
| 127 | + """ |
| 128 | + torch.manual_seed(42) |
| 129 | + |
| 130 | + # Mock configuration - provide all required parameters |
| 131 | + from sharktank.layers.configs import LlamaHParams |
| 132 | + |
| 133 | + # Create LlamaHParams with all required parameters |
| 134 | + hp = LlamaHParams( |
| 135 | + model_arch="llama", |
| 136 | + context_length=2048, |
| 137 | + embedding_length=512, # hidden dimension |
| 138 | + block_count=6, |
| 139 | + feed_forward_length=2048, |
| 140 | + attention_head_count=8, |
| 141 | + attn_head_dim=64, |
| 142 | + attention_layer_norm_rms_epsilon=1e-6, |
| 143 | + attention_head_count_kv=8, |
| 144 | + vocab_size=32000, |
| 145 | + ) |
| 146 | + |
| 147 | + # Create mock config |
| 148 | + config = LlamaModelConfig( |
| 149 | + hp=hp, |
| 150 | + activation_dtype=torch.float16, |
| 151 | + # attention_dtype=torch.float32, |
| 152 | + ) |
| 153 | + |
| 154 | + # Create mock theta with synthetic weights |
| 155 | + from sharktank.types import DefaultPrimitiveTensor |
| 156 | + |
| 157 | + # Mock output_norm weights |
| 158 | + output_norm_weight = torch.randn(hp.embedding_length, dtype=torch.float32) |
| 159 | + |
| 160 | + # Mock output (lm_head) weights |
| 161 | + output_weight = torch.randn(hp.vocab_size, hp.embedding_length, dtype=torch.float16) |
| 162 | + |
| 163 | + # Create theta structure |
| 164 | + theta_dict = { |
| 165 | + "output_norm": {"weight": DefaultPrimitiveTensor(data=output_norm_weight)}, |
| 166 | + "output": {"weight": DefaultPrimitiveTensor(data=output_weight)}, |
| 167 | + } |
| 168 | + |
| 169 | + theta = Theta(theta_dict) |
| 170 | + |
| 171 | + # Create module |
| 172 | + module = OutputLMHead(theta, config) |
| 173 | + |
| 174 | + # Create sample input |
| 175 | + batch_size, seq_len = 2, 8 |
| 176 | + sample_input = torch.randn( |
| 177 | + batch_size, seq_len, hp.embedding_length, dtype=torch.float32 |
| 178 | + ) |
| 179 | + |
| 180 | + # Run IREE vs torch comparison |
| 181 | + run_iree_vs_torch_fx( |
| 182 | + module, |
| 183 | + input_args=(sample_input,), |
| 184 | + atol=1e-4, |
| 185 | + rtol=0, |
| 186 | + compile_flags=LLM_HIP_COMPILE_FLAGS, |
| 187 | + ) |
| 188 | + |
| 189 | + |
| 190 | +if __name__ == "__main__": |
| 191 | + test_output_lm_head_mock() |
| 192 | + print("OutputLMHead mock test complete!") |
0 commit comments