|
1 |
| -/// This doesn't really do anything by ensures that there is a test for CI to run. |
2 |
| -#[test] |
3 |
| -fn smoke_test() { |
4 |
| - assert(true); |
| 1 | +mod mut_sparse_array; |
| 2 | +use dep::sort::sort_advanced; |
| 3 | + |
| 4 | +unconstrained fn __sort_field_as_u32(lhs: Field, rhs: Field) -> bool { |
| 5 | + // lhs.lt(rhs) |
| 6 | + lhs as u32 < rhs as u32 |
| 7 | +} |
| 8 | + |
| 9 | +fn assert_sorted(lhs: Field, rhs: Field) { |
| 10 | + let result = (rhs - lhs - 1); |
| 11 | + result.assert_max_bit_size(32); |
| 12 | +} |
| 13 | + |
| 14 | +/** |
| 15 | + * @brief MutSparseArray, a sparse array of configurable size with `N` nonzero entries. |
| 16 | + * Can be read from and written into |
| 17 | + * |
| 18 | + * @param keys is size N+2 because we want to always ensure that, |
| 19 | + * for any valid index, there is some X where `keys[X] <= index <= keys[X+1]` |
| 20 | + * when constructing, we will set keys[0] = 0, and keys[N-1] = maximum - 1 |
| 21 | + * @param values is size N+3 because of the following: |
| 22 | + * 1. keys[i] maps to values[i+1] |
| 23 | + * 2. values[0] is an empty object. when calling `get(idx)`, if `idx` is not in `keys` we will return `values[0]` |
| 24 | + **/ |
| 25 | +struct MutSparseArrayBase<let N: u32, T, ComparisonFuncs> |
| 26 | +{ |
| 27 | + values: [T; N + 3], |
| 28 | + keys: [Field; N + 2], |
| 29 | + linked_keys: [Field; N + 2], |
| 30 | + tail_ptr: Field, |
| 31 | + maximum: Field |
| 32 | +} |
| 33 | + |
| 34 | +struct U32RangeTraits { |
| 35 | +} |
| 36 | + |
| 37 | +struct MutSparseArray<let N: u32, T> |
| 38 | +{ |
| 39 | + inner: MutSparseArrayBase<N, T, U32RangeTraits> |
| 40 | +} |
| 41 | +/** |
| 42 | + * @brief SparseArray, stores a sparse array of up to size 2^32 with `N` nonzero entries |
| 43 | + * SparseArray is constant i.e. values canot be inserted after creation. |
| 44 | + * See MutSparseArray for a mutable version (a bit more expensive) |
| 45 | + * @param keys is size N+2 because we want to always ensure that, |
| 46 | + * for any valid index, there is some X where `keys[X] <= index <= keys[X+1]` |
| 47 | + * when constructing, we will set keys[0] = 0, and keys[N-1] = maximum - 1 |
| 48 | + * @param values is size N+3 because of the following: |
| 49 | + * 1. keys[i] maps to values[i+1] |
| 50 | + * 2. values[0] is an empty object. when calling `get(idx)`, if `idx` is not in `keys` we will return `values[0]` |
| 51 | + **/ |
| 52 | +struct SparseArray<let N: u32, T> { |
| 53 | + keys: [Field; N + 2], |
| 54 | + values: [T; N + 3], |
| 55 | + maximum: Field // can be up to 2^32 |
| 56 | +} |
| 57 | +impl<let N: u32, T> SparseArray<N, T> where T : std::default::Default { |
| 58 | + |
| 59 | + /** |
| 60 | + * @brief construct a SparseArray |
| 61 | + **/ |
| 62 | + fn create(_keys: [Field; N], _values: [T; N], size: Field) -> Self { |
| 63 | + let _maximum = size - 1; |
| 64 | + let mut r: Self = SparseArray { keys: [0; N + 2], values: [T::default(); N + 3], maximum: _maximum }; |
| 65 | + |
| 66 | + // for any valid index, we want to ensure the following is satified: |
| 67 | + // self.keys[X] <= index <= self.keys[X+1] |
| 68 | + // this requires us to sort hte keys, and insert a startpoint and endpoint |
| 69 | + let sorted_keys = sort_advanced(_keys, __sort_field_as_u32, assert_sorted); |
| 70 | + |
| 71 | + // insert start and endpoints |
| 72 | + r.keys[0] = 0; |
| 73 | + for i in 0..N { |
| 74 | + r.keys[i+1] = sorted_keys.sorted[i]; |
| 75 | + } |
| 76 | + r.keys[N+1] = _maximum; |
| 77 | + |
| 78 | + // populate values based on the sorted keys |
| 79 | + // note: self.keys[i] maps to self.values[i+1] |
| 80 | + // self.values[0] does not map to any key. we use it to store the default empty value, |
| 81 | + // which is returned when `get(idx)` is called and `idx` does not exist in `self.keys` |
| 82 | + for i in 0..N { |
| 83 | + r.values[i+2] = _values[sorted_keys.sort_indices[i]]; |
| 84 | + } |
| 85 | + // insert values that map to our key start and endpoints |
| 86 | + // if _keys[0] = 0 then values[0] must equal _values[0], so some conditional logic is required |
| 87 | + // (same for _keys[N-1]) |
| 88 | + let mut initial_value = T::default(); |
| 89 | + if (_keys[0] == 0) { |
| 90 | + initial_value = _values[0]; |
| 91 | + } |
| 92 | + let mut final_value = T::default(); |
| 93 | + if (_keys[N - 1] == _maximum) { |
| 94 | + final_value = _values[N-1]; |
| 95 | + } |
| 96 | + r.values[1] = initial_value; |
| 97 | + r.values[N+2] = final_value; |
| 98 | + |
| 99 | + // perform boundary checks! |
| 100 | + // the maximum size of the sparse array is 2^32 |
| 101 | + // we need to check that every element in `self.keys` is less than 2^32 |
| 102 | + // because `self.keys` is sorted, we can simply validate that |
| 103 | + // sorted_keys.sorted[0] < 2^32 |
| 104 | + // sorted_keys.sorted[N-1] < maximum |
| 105 | + sorted_keys.sorted[0].assert_max_bit_size(32); |
| 106 | + _maximum.assert_max_bit_size(32); |
| 107 | + (_maximum - sorted_keys.sorted[N - 1]).assert_max_bit_size(32); |
| 108 | + r |
| 109 | + } |
| 110 | + |
| 111 | + /** |
| 112 | + * @brief determine whether `target` is present in `self.keys` |
| 113 | + * @details if `found == false`, `self.keys[found_index] < target < self.keys[found_index + 1]` |
| 114 | + **/ |
| 115 | + unconstrained fn search_for_key(self, target: Field) -> (Field, Field) { |
| 116 | + let mut found = false; |
| 117 | + let mut found_index = 0; |
| 118 | + let mut previous_less_than_or_equal_to_target = false; |
| 119 | + for i in 0..N + 2 { |
| 120 | + // if target = 0xffffffff we need to be able to add 1 here, so use u64 |
| 121 | + let current_less_than_or_equal_to_target = self.keys[i] as u64 <= target as u64; |
| 122 | + if (self.keys[i] == target) { |
| 123 | + found = true; |
| 124 | + found_index = i as Field; |
| 125 | + break; |
| 126 | + } |
| 127 | + if (previous_less_than_or_equal_to_target & !current_less_than_or_equal_to_target) { |
| 128 | + found_index = i as Field - 1; |
| 129 | + break; |
| 130 | + } |
| 131 | + previous_less_than_or_equal_to_target = current_less_than_or_equal_to_target; |
| 132 | + } |
| 133 | + (found as Field, found_index) |
| 134 | + } |
| 135 | + |
| 136 | + /** |
| 137 | + * @brief return element `idx` from the sparse array |
| 138 | + * @details cost is 14.5 gates per lookup |
| 139 | + **/ |
| 140 | + fn get(self, idx: Field) -> T { |
| 141 | + let (found, found_index) = unsafe { |
| 142 | + self.search_for_key(idx) |
| 143 | + }; |
| 144 | + // bool check. 0.25 gates cheaper than a raw `bool` type. need to fix at some point |
| 145 | + assert(found * found == found); |
| 146 | + |
| 147 | + // OK! So we have the following cases to check |
| 148 | + // 1. if `found` then `self.keys[found_index] == idx` |
| 149 | + // 2. if `!found` then `self.keys[found_index] < idx < self.keys[found_index + 1] |
| 150 | + // how do we simplify these checks? |
| 151 | + // case 1 can be converted to `self.keys[found_index] <= idx <= self.keys[found_index] |
| 152 | + // case 2 can be modified to `self.keys[found_index] + 1 <= idx <= self.keys[found_index + 1] - 1 |
| 153 | + // combine the two into the following single statement: |
| 154 | + // `self.keys[found_index] + 1 - found <= idx <= self.keys[found_index + 1 - found] - 1 + found |
| 155 | + let lhs = self.keys[found_index]; |
| 156 | + let rhs = self.keys[found_index + 1 - found]; |
| 157 | + let lhs_condition = idx - lhs - 1 + found; |
| 158 | + let rhs_condition = rhs - 1 + found - idx; |
| 159 | + lhs_condition.assert_max_bit_size(32); |
| 160 | + rhs_condition.assert_max_bit_size(32); |
| 161 | + |
| 162 | + // self.keys[i] maps to self.values[i+1] |
| 163 | + // however...if we did not find a non-sparse entry, we want to return self.values[0] (the default value) |
| 164 | + let value_index = (found_index + 1) * found; |
| 165 | + self.values[value_index] |
| 166 | + } |
| 167 | +} |
| 168 | + |
| 169 | +mod test { |
| 170 | + |
| 171 | + use crate::SparseArray; |
| 172 | + #[test] |
| 173 | +fn test_sparse_lookup() { |
| 174 | + let example = SparseArray::create([1, 99, 7, 5], [123, 101112, 789, 456], 100); |
| 175 | + |
| 176 | + assert(example.get(1) == 123); |
| 177 | + assert(example.get(5) == 456); |
| 178 | + assert(example.get(7) == 789); |
| 179 | + assert(example.get(99) == 101112); |
| 180 | + |
| 181 | + for i in 0..100 { |
| 182 | + if ((i != 1) & (i != 5) & (i != 7) & (i != 99)) { |
| 183 | + assert(example.get(i as Field) == 0); |
| 184 | + } |
| 185 | + } |
| 186 | + } |
| 187 | + |
| 188 | + #[test] |
| 189 | +fn test_sparse_lookup_boundary_cases() { |
| 190 | + // what about when keys[0] = 0 and keys[N-1] = 2^32 - 1? |
| 191 | + let example = SparseArray::create( |
| 192 | + [0, 99999, 7, 0xffffffff], |
| 193 | + [123, 101112, 789, 456], |
| 194 | + 0x100000000 |
| 195 | + ); |
| 196 | + |
| 197 | + assert(example.get(0) == 123); |
| 198 | + assert(example.get(99999) == 101112); |
| 199 | + assert(example.get(7) == 789); |
| 200 | + assert(example.get(0xffffffff) == 456); |
| 201 | + assert(example.get(0xfffffffe) == 0); |
| 202 | + } |
| 203 | + |
| 204 | + #[test(should_fail_with = "call to assert_max_bit_size")] |
| 205 | +fn test_sparse_lookup_overflow() { |
| 206 | + let example = SparseArray::create([1, 5, 7, 99999], [123, 456, 789, 101112], 100000); |
| 207 | + |
| 208 | + assert(example.get(100000) == 0); |
| 209 | + } |
| 210 | + |
| 211 | + #[test(should_fail_with = "call to assert_max_bit_size")] |
| 212 | +fn test_sparse_lookup_boundary_case_overflow() { |
| 213 | + let example = SparseArray::create([0, 5, 7, 0xffffffff], [123, 456, 789, 101112], 0x100000000); |
| 214 | + |
| 215 | + assert(example.get(0x100000000) == 0); |
| 216 | + } |
| 217 | + |
| 218 | + #[test(should_fail_with = "call to assert_max_bit_size")] |
| 219 | +fn test_sparse_lookup_key_exceeds_maximum() { |
| 220 | + let example = SparseArray::create([0, 5, 7, 0xffffffff], [123, 456, 789, 101112], 0xffffffff); |
| 221 | + assert(example.maximum == 0xffffffff); |
| 222 | + } |
| 223 | + #[test] |
| 224 | +fn test_sparse_lookup_u32() { |
| 225 | + let example = SparseArray::create( |
| 226 | + [1, 99, 7, 5], |
| 227 | + [123 as u32, 101112 as u32, 789 as u32, 456 as u32], |
| 228 | + 100 |
| 229 | + ); |
| 230 | + |
| 231 | + assert(example.get(1) == 123); |
| 232 | + assert(example.get(5) == 456); |
| 233 | + assert(example.get(7) == 789); |
| 234 | + assert(example.get(99) == 101112); |
| 235 | + |
| 236 | + for i in 0..100 { |
| 237 | + if ((i != 1) & (i != 5) & (i != 7) & (i != 99)) { |
| 238 | + assert(example.get(i as Field) == 0); |
| 239 | + } |
| 240 | + } |
| 241 | + } |
| 242 | + |
| 243 | + struct F { |
| 244 | + foo: [Field; 3] |
| 245 | +} |
| 246 | + impl std::cmp::Eq for F { |
| 247 | + fn eq(self, other: Self) -> bool { |
| 248 | + self.foo == other.foo |
| 249 | + } |
| 250 | + } |
| 251 | + |
| 252 | + impl std::default::Default for F { |
| 253 | + fn default() -> Self { |
| 254 | + F { foo: [0; 3] } |
| 255 | + } |
| 256 | + } |
| 257 | + |
| 258 | + #[test] |
| 259 | +fn test_sparse_lookup_struct() { |
| 260 | + let values = [F { foo: [1, 2, 3] }, F { foo: [4, 5, 6] }, F { foo: [7, 8, 9] }, F { foo: [10, 11, 12] }]; |
| 261 | + let example = SparseArray::create([1, 99, 7, 5], values, 100000); |
| 262 | + |
| 263 | + assert(example.get(1) == values[0]); |
| 264 | + assert(example.get(5) == values[3]); |
| 265 | + assert(example.get(7) == values[2]); |
| 266 | + assert(example.get(99) == values[1]); |
| 267 | + for i in 0..100 { |
| 268 | + if ((i != 1) & (i != 5) & (i != 7) & (i != 99)) { |
| 269 | + assert(example.get(i as Field) == F::default()); |
| 270 | + } |
| 271 | + } |
| 272 | + } |
5 | 273 | }
|
0 commit comments