Skip to content

Commit 9828ee4

Browse files
authored
Merge pull request #36 from nullchimp/ui-refactor
UI refactor
2 parents 3537672 + bfb0b48 commit 9828ee4

25 files changed

+4329
-1152
lines changed

.env.example

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,4 +18,8 @@ MEMGRAPH_USERNAME=dummy-username
1818
MEMGRAPH_PASSWORD=dummy-password
1919

2020
# Add other environment variables for authentication as needed
21-
API_KEY=test_12345
21+
API_KEY=test_12345
22+
23+
# MCP Server Tokens
24+
MCP_GITHUB_TOKEN=github_token
25+
MCP_ATLASSIAN_TOKEN=atlassian_token

build.js

Lines changed: 57 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
const esbuild = require('esbuild');
2+
const path = require('path');
3+
4+
const buildOptions = {
5+
entryPoints: ['src/ui/main.ts'],
6+
bundle: true,
7+
outfile: 'src/ui/dist/bundle.js',
8+
format: 'iife',
9+
target: 'es2020',
10+
minify: process.env.NODE_ENV === 'production',
11+
sourcemap: process.env.NODE_ENV !== 'production',
12+
globalName: 'ChatApp',
13+
define: {
14+
'process.env.NODE_ENV': JSON.stringify(process.env.NODE_ENV || 'development')
15+
},
16+
loader: {
17+
'.ts': 'ts',
18+
},
19+
tsconfig: 'tsconfig.json'
20+
};
21+
22+
// Build function
23+
async function build() {
24+
try {
25+
await esbuild.build(buildOptions);
26+
console.log('✅ Build completed successfully');
27+
} catch (error) {
28+
console.error('❌ Build failed:', error);
29+
process.exit(1);
30+
}
31+
}
32+
33+
// Watch function
34+
async function watch() {
35+
try {
36+
const ctx = await esbuild.context(buildOptions);
37+
await ctx.watch();
38+
console.log('👀 Watching for changes...');
39+
} catch (error) {
40+
console.error('❌ Watch failed:', error);
41+
process.exit(1);
42+
}
43+
}
44+
45+
// Export for programmatic use
46+
module.exports = { build, watch, buildOptions };
47+
48+
// CLI usage
49+
if (require.main === module) {
50+
const command = process.argv[2];
51+
52+
if (command === 'watch') {
53+
watch();
54+
} else {
55+
build();
56+
}
57+
}

config/mcp.template.json

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,8 @@
66
"<Arguments to pass to the server>"
77
],
88
"env": {
9+
// Environment variable values preceeded by a dollar sign ($) will be replaced with the value from the .env file.
10+
// For example, "$MCP_GITHUB_TOKEN" will be replaced with the value of MCP_GITHUB_TOKEN from the .env file.
911
"<Environment Variable Name>": "<Environment Variable Value>"
1012
}
1113
}

docs/ideas/agent-behavior.md

Lines changed: 290 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,290 @@
1+
# Agent Behavior Optimization Strategy
2+
3+
This document outlines a comprehensive strategy for enhancing agent behavior through architectural improvements, evaluation of proposed ideas, and introduction of new high-impact optimization techniques.
4+
5+
## Executive Summary
6+
7+
Current agent architecture shows solid fundamentals with session management, dynamic tool loading, and adaptive system prompts. However, several critical areas require optimization to achieve production-ready performance and user satisfaction.
8+
9+
**High-Impact Recommendations:**
10+
- Implement context-aware prompt adaptation (not just tool-based updates)
11+
- Add agent specialization hierarchy for complex task delegation
12+
- Introduce proactive tool orchestration and intelligent error recovery
13+
- Deploy conversation state management with semantic memory integration
14+
15+
## Critical Evaluation of Proposed Ideas
16+
17+
### 1. Flexible System Prompts ✅ **STRONG - PRIORITIZE**
18+
19+
**Current State:** System prompts update only when tools change, missing contextual adaptation opportunities.
20+
21+
**Strengths:**
22+
- Builds on existing `_update_system_prompt()` infrastructure
23+
- Low implementation complexity with high user experience impact
24+
- Addresses real limitation in current architecture
25+
26+
**Enhanced Implementation Strategy:**
27+
```python
28+
class ContextAwarePromptManager:
29+
def __init__(self):
30+
self.base_prompt = self._load_base_prompt()
31+
self.context_adapters = {
32+
'task_type': TaskTypeAdapter(),
33+
'user_expertise': ExpertiseAdapter(),
34+
'conversation_stage': StageAdapter(),
35+
'domain_focus': DomainAdapter()
36+
}
37+
38+
def generate_prompt(self, context: Dict[str, Any]) -> str:
39+
# Dynamic prompt composition based on conversation context
40+
adapted_sections = []
41+
for adapter_name, adapter in self.context_adapters.items():
42+
if context.get(adapter_name):
43+
adapted_sections.append(
44+
adapter.adapt(self.base_prompt, context[adapter_name])
45+
)
46+
return self._merge_prompt_sections(adapted_sections)
47+
```
48+
49+
**Implementation Priority:** Phase 1 (4-6 weeks)
50+
51+
### 2. Multiple Specialized Agents ⚠️ **MODERATE - REFINE APPROACH**
52+
53+
**Original Idea Analysis:**
54+
- **Weakness:** Generic "multiple agents" without clear specialization strategy
55+
- **Risk:** Communication overhead, coordination complexity, debugging difficulties
56+
57+
**Refined Strategy - Agent Specialization Hierarchy:**
58+
Instead of multiple independent agents, implement specialized capabilities within a single orchestrating agent:
59+
60+
```python
61+
class SpecializedCapabilityManager:
62+
def __init__(self):
63+
self.capabilities = {
64+
'research': ResearchCapability(),
65+
'analysis': AnalysisCapability(),
66+
'coding': CodingCapability(),
67+
'creative': CreativeCapability()
68+
}
69+
70+
async def route_task(self, task: Task) -> CapabilityResult:
71+
capability = self._select_capability(task)
72+
return await capability.execute(task, context=self.shared_context)
73+
```
74+
75+
**Benefits:**
76+
- Single session context maintained
77+
- Specialized processing without coordination overhead
78+
- Clear capability boundaries with shared memory
79+
80+
**Implementation Priority:** Phase 2 (6-8 weeks)
81+
82+
### 3. Improved Tool Use 🔄 **PARTIAL - NEEDS EXPANSION**
83+
84+
**Current Limitation Analysis:**
85+
- Tools are enabled/disabled but lack intelligent orchestration
86+
- No proactive tool suggestion or error recovery
87+
- Missing tool performance optimization and caching
88+
89+
**Enhanced Tool Orchestration Strategy:**
90+
91+
```python
92+
class IntelligentToolOrchestrator:
93+
def __init__(self):
94+
self.tool_performance_tracker = ToolPerformanceTracker()
95+
self.tool_recommender = ToolRecommendationEngine()
96+
self.error_recovery = ToolErrorRecovery()
97+
98+
async def execute_with_optimization(self, task: Task) -> Result:
99+
# Pre-execution optimization
100+
optimal_tools = await self.tool_recommender.suggest_tools(task)
101+
102+
# Execution with monitoring
103+
result = await self._execute_with_fallbacks(task, optimal_tools)
104+
105+
# Post-execution learning
106+
self.tool_performance_tracker.record_usage(task, result)
107+
108+
return result
109+
```
110+
111+
**Implementation Priority:** Phase 1 (concurrent with flexible prompts)
112+
113+
## New High-Impact Ideas
114+
115+
### 4. Conversation State Management 🆕 **HIGH IMPACT**
116+
117+
**Problem:** Current agent lacks semantic understanding of conversation progression and context shifts.
118+
119+
**Solution:** Implement conversation state tracking with semantic transitions:
120+
121+
```python
122+
class ConversationStateManager:
123+
def __init__(self):
124+
self.states = ['exploration', 'focused_research', 'problem_solving', 'synthesis']
125+
self.transition_detector = StateTransitionDetector()
126+
self.memory_prioritizer = ContextualMemoryPrioritizer()
127+
128+
def update_state(self, new_message: str) -> ConversationState:
129+
predicted_state = self.transition_detector.predict_transition(
130+
current_state=self.current_state,
131+
message=new_message,
132+
history=self.recent_history
133+
)
134+
135+
if predicted_state != self.current_state:
136+
self._handle_state_transition(predicted_state)
137+
138+
return self.current_state
139+
```
140+
141+
**Benefits:**
142+
- Adaptive response strategies based on conversation flow
143+
- Improved context retention and retrieval
144+
- Better user experience through contextual awareness
145+
146+
### 5. Proactive Error Prevention 🆕 **HIGH IMPACT**
147+
148+
**Problem:** Current agent is reactive - only handles errors after they occur.
149+
150+
**Solution:** Implement predictive error prevention and graceful degradation:
151+
152+
```python
153+
class ProactiveErrorManager:
154+
def __init__(self):
155+
self.error_predictor = ErrorPredictionModel()
156+
self.fallback_strategies = FallbackStrategyRepository()
157+
158+
async def execute_with_prediction(self, action: Action) -> Result:
159+
risk_assessment = self.error_predictor.assess_risk(action)
160+
161+
if risk_assessment.high_risk:
162+
return await self._execute_with_enhanced_monitoring(action)
163+
164+
return await self._standard_execution(action)
165+
```
166+
167+
### 6. Semantic Memory Integration 🆕 **MEDIUM-HIGH IMPACT**
168+
169+
**Problem:** Current RAG system lacks integration with conversation memory for personalized responses.
170+
171+
**Solution:** Bridge RAG knowledge base with conversational context:
172+
173+
```python
174+
class SemanticMemoryBridge:
175+
def __init__(self, rag_system, conversation_memory):
176+
self.rag = rag_system
177+
self.memory = conversation_memory
178+
self.integration_engine = MemoryIntegrationEngine()
179+
180+
async def enhanced_retrieval(self, query: str) -> EnrichedContext:
181+
# Combine RAG retrieval with conversation memory
182+
rag_results = await self.rag.retrieve(query)
183+
memory_context = await self.memory.get_relevant_context(query)
184+
185+
return self.integration_engine.merge_contexts(rag_results, memory_context)
186+
```
187+
188+
## Implementation Roadmap
189+
190+
### Phase 1: Foundation (4-6 weeks)
191+
**Priority:** Context-aware prompts + Tool orchestration
192+
- Implement `ContextAwarePromptManager`
193+
- Deploy `IntelligentToolOrchestrator`
194+
- Add basic conversation state detection
195+
196+
**Success Metrics:**
197+
- 40% improvement in task completion accuracy
198+
- 60% reduction in tool selection errors
199+
- User satisfaction score >4.2/5
200+
201+
### Phase 2: Intelligence (6-8 weeks)
202+
**Priority:** Specialized capabilities + Semantic memory
203+
- Deploy `SpecializedCapabilityManager`
204+
- Integrate `SemanticMemoryBridge` with existing RAG
205+
- Implement `ProactiveErrorManager`
206+
207+
**Success Metrics:**
208+
- 25% reduction in multi-step task failures
209+
- 50% improvement in context retention across sessions
210+
- 35% decrease in error recovery time
211+
212+
### Phase 3: Optimization (4-6 weeks)
213+
**Priority:** Performance tuning + Advanced features
214+
- Fine-tune all systems based on real usage data
215+
- Add advanced conversation state management
216+
- Implement user behavior learning
217+
218+
**Success Metrics:**
219+
- Sub-2 second response times for 90% of queries
220+
- 80% user task completion without clarification
221+
- Production-ready stability metrics
222+
223+
## Discarded Ideas & Rationale
224+
225+
### ❌ Generic Multi-Agent Architecture
226+
**Why Discarded:** Adds complexity without clear benefits for single-user sessions. Coordination overhead outweighs performance gains.
227+
228+
**Better Alternative:** Specialized capability routing within single agent context.
229+
230+
### ❌ Static Prompt Templates
231+
**Why Discarded:** Too rigid for dynamic conversations. Context-aware adaptation provides better user experience.
232+
233+
**Better Alternative:** Dynamic prompt composition based on conversation state.
234+
235+
### ❌ Tool Auto-Discovery
236+
**Why Discarded:** Security risks and unpredictable behavior. Current explicit tool management is more reliable.
237+
238+
**Better Alternative:** Intelligent tool recommendation within curated tool set.
239+
240+
## Integration with Existing Architecture
241+
242+
### Minimal Disruption Strategy
243+
- Extend current `Agent` class rather than replacing
244+
- Leverage existing `Chat` and tool infrastructure
245+
- Build on current session management system
246+
247+
### Key Integration Points
248+
1. **System Prompt Enhancement:** Replace `_update_system_prompt()` with context-aware version
249+
2. **Tool Management:** Extend current enable/disable with orchestration layer
250+
3. **Memory Integration:** Connect with existing RAG components in `src/core/rag/`
251+
4. **Session Continuity:** Build on current session management in `_agent_sessions`
252+
253+
## Success Measurement Framework
254+
255+
### Technical Metrics
256+
- **Response Accuracy:** Task completion without user clarification
257+
- **Context Retention:** Relevant information persistence across conversation turns
258+
- **Error Recovery:** Successful fallback execution rate
259+
- **Performance:** Response latency and system resource usage
260+
261+
### User Experience Metrics
262+
- **Task Success Rate:** Percentage of user goals achieved
263+
- **Conversation Flow:** Natural interaction progression
264+
- **User Satisfaction:** Direct feedback and retention metrics
265+
- **Learning Effectiveness:** Improvement in personalized responses over time
266+
267+
## Risk Mitigation
268+
269+
### Implementation Risks
270+
1. **Complexity Creep:** Maintain clear component boundaries and interfaces
271+
2. **Performance Degradation:** Implement performance monitoring from day one
272+
3. **Backward Compatibility:** Ensure existing functionality remains stable
273+
274+
### Mitigation Strategies
275+
- Incremental deployment with feature flags
276+
- Comprehensive testing at each phase
277+
- Performance benchmarking against current baseline
278+
- User feedback integration throughout development
279+
280+
## Conclusion
281+
282+
This optimization strategy transforms the current reactive agent into a proactive, context-aware system while maintaining architectural stability. The phased approach ensures manageable implementation with measurable improvements at each stage.
283+
284+
**Key Success Factors:**
285+
1. Focus on user experience improvements over technical complexity
286+
2. Leverage existing architecture strengths rather than rebuilding
287+
3. Measure and validate improvements at each implementation phase
288+
4. Maintain production stability throughout optimization process
289+
290+
The recommended approach prioritizes proven high-impact changes while introducing innovative features that advance the state of AI agent capabilities.

0 commit comments

Comments
 (0)