|
| 1 | +# Agent Behavior Optimization Strategy |
| 2 | + |
| 3 | +This document outlines a comprehensive strategy for enhancing agent behavior through architectural improvements, evaluation of proposed ideas, and introduction of new high-impact optimization techniques. |
| 4 | + |
| 5 | +## Executive Summary |
| 6 | + |
| 7 | +Current agent architecture shows solid fundamentals with session management, dynamic tool loading, and adaptive system prompts. However, several critical areas require optimization to achieve production-ready performance and user satisfaction. |
| 8 | + |
| 9 | +**High-Impact Recommendations:** |
| 10 | +- Implement context-aware prompt adaptation (not just tool-based updates) |
| 11 | +- Add agent specialization hierarchy for complex task delegation |
| 12 | +- Introduce proactive tool orchestration and intelligent error recovery |
| 13 | +- Deploy conversation state management with semantic memory integration |
| 14 | + |
| 15 | +## Critical Evaluation of Proposed Ideas |
| 16 | + |
| 17 | +### 1. Flexible System Prompts ✅ **STRONG - PRIORITIZE** |
| 18 | + |
| 19 | +**Current State:** System prompts update only when tools change, missing contextual adaptation opportunities. |
| 20 | + |
| 21 | +**Strengths:** |
| 22 | +- Builds on existing `_update_system_prompt()` infrastructure |
| 23 | +- Low implementation complexity with high user experience impact |
| 24 | +- Addresses real limitation in current architecture |
| 25 | + |
| 26 | +**Enhanced Implementation Strategy:** |
| 27 | +```python |
| 28 | +class ContextAwarePromptManager: |
| 29 | + def __init__(self): |
| 30 | + self.base_prompt = self._load_base_prompt() |
| 31 | + self.context_adapters = { |
| 32 | + 'task_type': TaskTypeAdapter(), |
| 33 | + 'user_expertise': ExpertiseAdapter(), |
| 34 | + 'conversation_stage': StageAdapter(), |
| 35 | + 'domain_focus': DomainAdapter() |
| 36 | + } |
| 37 | + |
| 38 | + def generate_prompt(self, context: Dict[str, Any]) -> str: |
| 39 | + # Dynamic prompt composition based on conversation context |
| 40 | + adapted_sections = [] |
| 41 | + for adapter_name, adapter in self.context_adapters.items(): |
| 42 | + if context.get(adapter_name): |
| 43 | + adapted_sections.append( |
| 44 | + adapter.adapt(self.base_prompt, context[adapter_name]) |
| 45 | + ) |
| 46 | + return self._merge_prompt_sections(adapted_sections) |
| 47 | +``` |
| 48 | + |
| 49 | +**Implementation Priority:** Phase 1 (4-6 weeks) |
| 50 | + |
| 51 | +### 2. Multiple Specialized Agents ⚠️ **MODERATE - REFINE APPROACH** |
| 52 | + |
| 53 | +**Original Idea Analysis:** |
| 54 | +- **Weakness:** Generic "multiple agents" without clear specialization strategy |
| 55 | +- **Risk:** Communication overhead, coordination complexity, debugging difficulties |
| 56 | + |
| 57 | +**Refined Strategy - Agent Specialization Hierarchy:** |
| 58 | +Instead of multiple independent agents, implement specialized capabilities within a single orchestrating agent: |
| 59 | + |
| 60 | +```python |
| 61 | +class SpecializedCapabilityManager: |
| 62 | + def __init__(self): |
| 63 | + self.capabilities = { |
| 64 | + 'research': ResearchCapability(), |
| 65 | + 'analysis': AnalysisCapability(), |
| 66 | + 'coding': CodingCapability(), |
| 67 | + 'creative': CreativeCapability() |
| 68 | + } |
| 69 | + |
| 70 | + async def route_task(self, task: Task) -> CapabilityResult: |
| 71 | + capability = self._select_capability(task) |
| 72 | + return await capability.execute(task, context=self.shared_context) |
| 73 | +``` |
| 74 | + |
| 75 | +**Benefits:** |
| 76 | +- Single session context maintained |
| 77 | +- Specialized processing without coordination overhead |
| 78 | +- Clear capability boundaries with shared memory |
| 79 | + |
| 80 | +**Implementation Priority:** Phase 2 (6-8 weeks) |
| 81 | + |
| 82 | +### 3. Improved Tool Use 🔄 **PARTIAL - NEEDS EXPANSION** |
| 83 | + |
| 84 | +**Current Limitation Analysis:** |
| 85 | +- Tools are enabled/disabled but lack intelligent orchestration |
| 86 | +- No proactive tool suggestion or error recovery |
| 87 | +- Missing tool performance optimization and caching |
| 88 | + |
| 89 | +**Enhanced Tool Orchestration Strategy:** |
| 90 | + |
| 91 | +```python |
| 92 | +class IntelligentToolOrchestrator: |
| 93 | + def __init__(self): |
| 94 | + self.tool_performance_tracker = ToolPerformanceTracker() |
| 95 | + self.tool_recommender = ToolRecommendationEngine() |
| 96 | + self.error_recovery = ToolErrorRecovery() |
| 97 | + |
| 98 | + async def execute_with_optimization(self, task: Task) -> Result: |
| 99 | + # Pre-execution optimization |
| 100 | + optimal_tools = await self.tool_recommender.suggest_tools(task) |
| 101 | + |
| 102 | + # Execution with monitoring |
| 103 | + result = await self._execute_with_fallbacks(task, optimal_tools) |
| 104 | + |
| 105 | + # Post-execution learning |
| 106 | + self.tool_performance_tracker.record_usage(task, result) |
| 107 | + |
| 108 | + return result |
| 109 | +``` |
| 110 | + |
| 111 | +**Implementation Priority:** Phase 1 (concurrent with flexible prompts) |
| 112 | + |
| 113 | +## New High-Impact Ideas |
| 114 | + |
| 115 | +### 4. Conversation State Management 🆕 **HIGH IMPACT** |
| 116 | + |
| 117 | +**Problem:** Current agent lacks semantic understanding of conversation progression and context shifts. |
| 118 | + |
| 119 | +**Solution:** Implement conversation state tracking with semantic transitions: |
| 120 | + |
| 121 | +```python |
| 122 | +class ConversationStateManager: |
| 123 | + def __init__(self): |
| 124 | + self.states = ['exploration', 'focused_research', 'problem_solving', 'synthesis'] |
| 125 | + self.transition_detector = StateTransitionDetector() |
| 126 | + self.memory_prioritizer = ContextualMemoryPrioritizer() |
| 127 | + |
| 128 | + def update_state(self, new_message: str) -> ConversationState: |
| 129 | + predicted_state = self.transition_detector.predict_transition( |
| 130 | + current_state=self.current_state, |
| 131 | + message=new_message, |
| 132 | + history=self.recent_history |
| 133 | + ) |
| 134 | + |
| 135 | + if predicted_state != self.current_state: |
| 136 | + self._handle_state_transition(predicted_state) |
| 137 | + |
| 138 | + return self.current_state |
| 139 | +``` |
| 140 | + |
| 141 | +**Benefits:** |
| 142 | +- Adaptive response strategies based on conversation flow |
| 143 | +- Improved context retention and retrieval |
| 144 | +- Better user experience through contextual awareness |
| 145 | + |
| 146 | +### 5. Proactive Error Prevention 🆕 **HIGH IMPACT** |
| 147 | + |
| 148 | +**Problem:** Current agent is reactive - only handles errors after they occur. |
| 149 | + |
| 150 | +**Solution:** Implement predictive error prevention and graceful degradation: |
| 151 | + |
| 152 | +```python |
| 153 | +class ProactiveErrorManager: |
| 154 | + def __init__(self): |
| 155 | + self.error_predictor = ErrorPredictionModel() |
| 156 | + self.fallback_strategies = FallbackStrategyRepository() |
| 157 | + |
| 158 | + async def execute_with_prediction(self, action: Action) -> Result: |
| 159 | + risk_assessment = self.error_predictor.assess_risk(action) |
| 160 | + |
| 161 | + if risk_assessment.high_risk: |
| 162 | + return await self._execute_with_enhanced_monitoring(action) |
| 163 | + |
| 164 | + return await self._standard_execution(action) |
| 165 | +``` |
| 166 | + |
| 167 | +### 6. Semantic Memory Integration 🆕 **MEDIUM-HIGH IMPACT** |
| 168 | + |
| 169 | +**Problem:** Current RAG system lacks integration with conversation memory for personalized responses. |
| 170 | + |
| 171 | +**Solution:** Bridge RAG knowledge base with conversational context: |
| 172 | + |
| 173 | +```python |
| 174 | +class SemanticMemoryBridge: |
| 175 | + def __init__(self, rag_system, conversation_memory): |
| 176 | + self.rag = rag_system |
| 177 | + self.memory = conversation_memory |
| 178 | + self.integration_engine = MemoryIntegrationEngine() |
| 179 | + |
| 180 | + async def enhanced_retrieval(self, query: str) -> EnrichedContext: |
| 181 | + # Combine RAG retrieval with conversation memory |
| 182 | + rag_results = await self.rag.retrieve(query) |
| 183 | + memory_context = await self.memory.get_relevant_context(query) |
| 184 | + |
| 185 | + return self.integration_engine.merge_contexts(rag_results, memory_context) |
| 186 | +``` |
| 187 | + |
| 188 | +## Implementation Roadmap |
| 189 | + |
| 190 | +### Phase 1: Foundation (4-6 weeks) |
| 191 | +**Priority:** Context-aware prompts + Tool orchestration |
| 192 | +- Implement `ContextAwarePromptManager` |
| 193 | +- Deploy `IntelligentToolOrchestrator` |
| 194 | +- Add basic conversation state detection |
| 195 | + |
| 196 | +**Success Metrics:** |
| 197 | +- 40% improvement in task completion accuracy |
| 198 | +- 60% reduction in tool selection errors |
| 199 | +- User satisfaction score >4.2/5 |
| 200 | + |
| 201 | +### Phase 2: Intelligence (6-8 weeks) |
| 202 | +**Priority:** Specialized capabilities + Semantic memory |
| 203 | +- Deploy `SpecializedCapabilityManager` |
| 204 | +- Integrate `SemanticMemoryBridge` with existing RAG |
| 205 | +- Implement `ProactiveErrorManager` |
| 206 | + |
| 207 | +**Success Metrics:** |
| 208 | +- 25% reduction in multi-step task failures |
| 209 | +- 50% improvement in context retention across sessions |
| 210 | +- 35% decrease in error recovery time |
| 211 | + |
| 212 | +### Phase 3: Optimization (4-6 weeks) |
| 213 | +**Priority:** Performance tuning + Advanced features |
| 214 | +- Fine-tune all systems based on real usage data |
| 215 | +- Add advanced conversation state management |
| 216 | +- Implement user behavior learning |
| 217 | + |
| 218 | +**Success Metrics:** |
| 219 | +- Sub-2 second response times for 90% of queries |
| 220 | +- 80% user task completion without clarification |
| 221 | +- Production-ready stability metrics |
| 222 | + |
| 223 | +## Discarded Ideas & Rationale |
| 224 | + |
| 225 | +### ❌ Generic Multi-Agent Architecture |
| 226 | +**Why Discarded:** Adds complexity without clear benefits for single-user sessions. Coordination overhead outweighs performance gains. |
| 227 | + |
| 228 | +**Better Alternative:** Specialized capability routing within single agent context. |
| 229 | + |
| 230 | +### ❌ Static Prompt Templates |
| 231 | +**Why Discarded:** Too rigid for dynamic conversations. Context-aware adaptation provides better user experience. |
| 232 | + |
| 233 | +**Better Alternative:** Dynamic prompt composition based on conversation state. |
| 234 | + |
| 235 | +### ❌ Tool Auto-Discovery |
| 236 | +**Why Discarded:** Security risks and unpredictable behavior. Current explicit tool management is more reliable. |
| 237 | + |
| 238 | +**Better Alternative:** Intelligent tool recommendation within curated tool set. |
| 239 | + |
| 240 | +## Integration with Existing Architecture |
| 241 | + |
| 242 | +### Minimal Disruption Strategy |
| 243 | +- Extend current `Agent` class rather than replacing |
| 244 | +- Leverage existing `Chat` and tool infrastructure |
| 245 | +- Build on current session management system |
| 246 | + |
| 247 | +### Key Integration Points |
| 248 | +1. **System Prompt Enhancement:** Replace `_update_system_prompt()` with context-aware version |
| 249 | +2. **Tool Management:** Extend current enable/disable with orchestration layer |
| 250 | +3. **Memory Integration:** Connect with existing RAG components in `src/core/rag/` |
| 251 | +4. **Session Continuity:** Build on current session management in `_agent_sessions` |
| 252 | + |
| 253 | +## Success Measurement Framework |
| 254 | + |
| 255 | +### Technical Metrics |
| 256 | +- **Response Accuracy:** Task completion without user clarification |
| 257 | +- **Context Retention:** Relevant information persistence across conversation turns |
| 258 | +- **Error Recovery:** Successful fallback execution rate |
| 259 | +- **Performance:** Response latency and system resource usage |
| 260 | + |
| 261 | +### User Experience Metrics |
| 262 | +- **Task Success Rate:** Percentage of user goals achieved |
| 263 | +- **Conversation Flow:** Natural interaction progression |
| 264 | +- **User Satisfaction:** Direct feedback and retention metrics |
| 265 | +- **Learning Effectiveness:** Improvement in personalized responses over time |
| 266 | + |
| 267 | +## Risk Mitigation |
| 268 | + |
| 269 | +### Implementation Risks |
| 270 | +1. **Complexity Creep:** Maintain clear component boundaries and interfaces |
| 271 | +2. **Performance Degradation:** Implement performance monitoring from day one |
| 272 | +3. **Backward Compatibility:** Ensure existing functionality remains stable |
| 273 | + |
| 274 | +### Mitigation Strategies |
| 275 | +- Incremental deployment with feature flags |
| 276 | +- Comprehensive testing at each phase |
| 277 | +- Performance benchmarking against current baseline |
| 278 | +- User feedback integration throughout development |
| 279 | + |
| 280 | +## Conclusion |
| 281 | + |
| 282 | +This optimization strategy transforms the current reactive agent into a proactive, context-aware system while maintaining architectural stability. The phased approach ensures manageable implementation with measurable improvements at each stage. |
| 283 | + |
| 284 | +**Key Success Factors:** |
| 285 | +1. Focus on user experience improvements over technical complexity |
| 286 | +2. Leverage existing architecture strengths rather than rebuilding |
| 287 | +3. Measure and validate improvements at each implementation phase |
| 288 | +4. Maintain production stability throughout optimization process |
| 289 | + |
| 290 | +The recommended approach prioritizes proven high-impact changes while introducing innovative features that advance the state of AI agent capabilities. |
0 commit comments