Skip to content

Commit 07e2846

Browse files
authored
Update Readme.md
1 parent 3ac97de commit 07e2846

File tree

1 file changed

+11
-13
lines changed

1 file changed

+11
-13
lines changed

Readme.md

Lines changed: 11 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,6 @@
11
# Using the NAG Library for Python with Kdb+ and PyQ
22

3-
Christopher Brandt <br>
4-
Numerical Algorithms Group (NAG), Inc. <br>
5-
Lisle, IL, USA <br>
6-
April 3, 2019
3+
Christopher Brandt, NAG Inc., 24 -April 2019
74

85
## 1 Background
96

@@ -27,7 +24,7 @@ Both the NAG Library for *Python* and kdb+ are commercial software packages that
2724

2825
## 3 Examples
2926

30-
The following three examples demonstrate how to call the NAG Library for *Python* routines using kdb+ and PyQ. These examples were carefully selected, as they cover techniques found in the majority of usage cases a customer will encounter across all 1,700+ routines within the library. If your usage case falls outside of these three examples, please contact [NAG support](mailto:[email protected]) for assistance.
27+
The following three examples demonstrate how to call NAG Library for *Python* routines using kdb+ and PyQ. These examples were carefully selected, as they cover techniques found in the majority of usage cases a customer will encounter across all 1,700+ routines within the library. If your usage case falls outside of these three examples, please contact [NAG support](mailto:[email protected]) for assistance.
3128

3229
### 3.1 Example One: BLAS Routine DAXPY
3330

@@ -47,7 +44,7 @@ Below is the NAG Library for *Python* signature for this routine.
4744
Returns: y: float, ndarray, shape(n)
4845
```
4946

50-
Within our terminal, we begin by initiating a PyQ interaction session.
47+
Within our terminal, we begin by initiating a PyQ interactive session.
5148

5249
```
5350
$ pyq
@@ -105,16 +102,16 @@ Returns: x: float, ndarray, shape(n,n)
105102
nrmgrd: float
106103
```
107104

108-
Within our interactive PyQ session, we begin importing the Correlation and Regression Analysis module, then entering entering a q environment.
105+
Within our interactive PyQ session, we begin by importing the Correlation and Regression Analysis module of the NAG Library for *Python*.
109106

110107
```
111108
>>> from naginterfaces.library import correg
112-
>>> q()
113109
```
114110

115-
Next, we define our parameters as q objects.
111+
Next, we enter a q environment and define our parameters as q objects.
116112

117113
```
114+
>>> q()
118115
q) alpha:0.5f
119116
q) x:4#2 2 2 2f
120117
q) g:4 4#2 -1 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 2f
@@ -127,7 +124,8 @@ We then exit the q environment and invoke the NAG routine.
127124

128125
```
129126
q) \
130-
>>> x = correg.corrmat_nearest_bounded(q.g, str(q.opt), float(q.alpha), q.w)
127+
>>> x = correg.corrmat_nearest_bounded(
128+
q.g, str(q.opt), float(q.alpha), q.w)
131129
>>> x # display solution
132130
```
133131

@@ -156,16 +154,16 @@ Returns: result: float
156154
abserr: float
157155
```
158156

159-
We start by importing the Quadrature module, then enter a q environment.
157+
We start by importing the Quadrature module of the NAG Library for *Python*.
160158

161159
```
162160
>>> from naginterfaces.library import quad
163-
>>> q()
164161
```
165162

166-
Next, we define our parameters as q objects.
163+
Next, we enter a q environment and define our parameters as q objects.
167164

168165
```
166+
>>> q()
169167
q) a:0f
170168
q) b:2f
171169
q) epsabs:0f

0 commit comments

Comments
 (0)