|
6 | 6 | #include "rand_array.h"
|
7 | 7 | #include "x86simdsort.h"
|
8 | 8 | #include "x86simdsort-scalar.h"
|
| 9 | +#include "test-qsort-common.h" |
9 | 10 | #include <gtest/gtest.h>
|
10 | 11 |
|
11 | 12 | template <typename T>
|
@@ -106,6 +107,70 @@ TYPED_TEST_P(simdkvsort, test_kvsort)
|
106 | 107 | }
|
107 | 108 | }
|
108 | 109 |
|
| 110 | +TYPED_TEST_P(simdkvsort, test_kvselect) |
| 111 | +{ |
| 112 | + using T1 = typename std::tuple_element<0, decltype(TypeParam())>::type; |
| 113 | + using T2 = typename std::tuple_element<1, decltype(TypeParam())>::type; |
| 114 | + for (auto type : this->arrtype) { |
| 115 | + bool hasnan = (type == "rand_with_nan") ? true : false; |
| 116 | + for (auto size : this->arrsize) { |
| 117 | + size_t k = rand() % size; |
| 118 | + |
| 119 | + std::vector<T1> key = get_array<T1>(type, size); |
| 120 | + std::vector<T2> val = get_array<T2>(type, size); |
| 121 | + std::vector<T1> key_bckp = key; |
| 122 | + std::vector<T2> val_bckp = val; |
| 123 | + |
| 124 | + xss::scalar::keyvalue_qsort( |
| 125 | + key_bckp.data(), val_bckp.data(), size, hasnan); |
| 126 | + |
| 127 | + // Test select by using it as part of partial_sort |
| 128 | + x86simdsort::keyvalue_select(key.data(), val.data(), k, size, hasnan); |
| 129 | + IS_ARR_PARTITIONED<T1>(key, k, key_bckp[k], type); |
| 130 | + xss::scalar::keyvalue_qsort(key.data(), val.data(), k, hasnan); |
| 131 | + |
| 132 | + |
| 133 | + bool is_kv_equivalent = kv_equivalent<T1, T2>(key.data(), val.data(), key_bckp.data(), val_bckp.data(), k); |
| 134 | + ASSERT_EQ(is_kv_equivalent, true); |
| 135 | + |
| 136 | + key.clear(); |
| 137 | + val.clear(); |
| 138 | + key_bckp.clear(); |
| 139 | + val_bckp.clear(); |
| 140 | + } |
| 141 | + } |
| 142 | +} |
| 143 | + |
| 144 | +TYPED_TEST_P(simdkvsort, test_kvpartial_sort) |
| 145 | +{ |
| 146 | + using T1 = typename std::tuple_element<0, decltype(TypeParam())>::type; |
| 147 | + using T2 = typename std::tuple_element<1, decltype(TypeParam())>::type; |
| 148 | + for (auto type : this->arrtype) { |
| 149 | + bool hasnan = (type == "rand_with_nan") ? true : false; |
| 150 | + for (auto size : this->arrsize) { |
| 151 | + size_t k = rand() % size; |
| 152 | + |
| 153 | + std::vector<T1> key = get_array<T1>(type, size); |
| 154 | + std::vector<T2> val = get_array<T2>(type, size); |
| 155 | + std::vector<T1> key_bckp = key; |
| 156 | + std::vector<T2> val_bckp = val; |
| 157 | + x86simdsort::keyvalue_partial_sort(key.data(), val.data(), k, size, hasnan); |
| 158 | + xss::scalar::keyvalue_qsort( |
| 159 | + key_bckp.data(), val_bckp.data(), size, hasnan); |
| 160 | + |
| 161 | + IS_ARR_PARTIALSORTED<T1>(key, k, key_bckp, type); |
| 162 | + |
| 163 | + bool is_kv_equivalent = kv_equivalent<T1, T2>(key.data(), val.data(), key_bckp.data(), val_bckp.data(), k); |
| 164 | + ASSERT_EQ(is_kv_equivalent, true); |
| 165 | + |
| 166 | + key.clear(); |
| 167 | + val.clear(); |
| 168 | + key_bckp.clear(); |
| 169 | + val_bckp.clear(); |
| 170 | + } |
| 171 | + } |
| 172 | +} |
| 173 | + |
109 | 174 | TYPED_TEST_P(simdkvsort, test_validator)
|
110 | 175 | {
|
111 | 176 | // Tests a few edge cases to verify the tests are working correctly and identifying it as functional
|
@@ -152,7 +217,7 @@ TYPED_TEST_P(simdkvsort, test_validator)
|
152 | 217 | ASSERT_EQ(is_kv_equivalent, true);
|
153 | 218 | }
|
154 | 219 |
|
155 |
| -REGISTER_TYPED_TEST_SUITE_P(simdkvsort, test_kvsort, test_validator); |
| 220 | +REGISTER_TYPED_TEST_SUITE_P(simdkvsort, test_kvsort, test_kvselect, test_kvpartial_sort, test_validator); |
156 | 221 |
|
157 | 222 | #define CREATE_TUPLES(type) \
|
158 | 223 | std::tuple<double, type>, std::tuple<uint64_t, type>, \
|
|
0 commit comments