|
7 | 7 | #ifndef AVX512_ARGSORT_64BIT
|
8 | 8 | #define AVX512_ARGSORT_64BIT
|
9 | 9 |
|
| 10 | +#include "avx512-common-qsort.h" |
10 | 11 | #include "avx512-64bit-common.h"
|
11 |
| -#include "avx512-64bit-keyvalue-networks.hpp" |
12 |
| -#include "avx512-common-argsort.h" |
| 12 | +#include "xss-network-keyvaluesort.hpp" |
| 13 | +#include <numeric> |
13 | 14 |
|
14 | 15 | template <typename T>
|
15 | 16 | X86_SIMD_SORT_INLINE void std_argselect_withnan(
|
@@ -64,6 +65,294 @@ std_argsort(T *arr, arrsize_t *arg, arrsize_t left, arrsize_t right)
|
64 | 65 | });
|
65 | 66 | }
|
66 | 67 |
|
| 68 | + |
| 69 | +/* Workaround for NumPy failed build on macOS x86_64: implicit instantiation of |
| 70 | + * undefined template 'zmm_vector<unsigned long>'*/ |
| 71 | +#ifdef __APPLE__ |
| 72 | +using argtype = typename std::conditional<sizeof(arrsize_t) == sizeof(int32_t), |
| 73 | + ymm_vector<uint32_t>, |
| 74 | + zmm_vector<uint64_t>>::type; |
| 75 | +#else |
| 76 | +using argtype = typename std::conditional<sizeof(arrsize_t) == sizeof(int32_t), |
| 77 | + ymm_vector<arrsize_t>, |
| 78 | + zmm_vector<arrsize_t>>::type; |
| 79 | +#endif |
| 80 | +using argreg_t = typename argtype::reg_t; |
| 81 | + |
| 82 | +/* |
| 83 | + * Parition one ZMM register based on the pivot and returns the index of the |
| 84 | + * last element that is less than equal to the pivot. |
| 85 | + */ |
| 86 | +template <typename vtype, typename type_t, typename reg_t> |
| 87 | +X86_SIMD_SORT_INLINE int32_t partition_vec(type_t *arg, |
| 88 | + arrsize_t left, |
| 89 | + arrsize_t right, |
| 90 | + const argreg_t arg_vec, |
| 91 | + const reg_t curr_vec, |
| 92 | + const reg_t pivot_vec, |
| 93 | + reg_t *smallest_vec, |
| 94 | + reg_t *biggest_vec) |
| 95 | +{ |
| 96 | + /* which elements are larger than the pivot */ |
| 97 | + typename vtype::opmask_t gt_mask = vtype::ge(curr_vec, pivot_vec); |
| 98 | + int32_t amount_gt_pivot = _mm_popcnt_u32((int32_t)gt_mask); |
| 99 | + argtype::mask_compressstoreu( |
| 100 | + arg + left, vtype::knot_opmask(gt_mask), arg_vec); |
| 101 | + argtype::mask_compressstoreu( |
| 102 | + arg + right - amount_gt_pivot, gt_mask, arg_vec); |
| 103 | + *smallest_vec = vtype::min(curr_vec, *smallest_vec); |
| 104 | + *biggest_vec = vtype::max(curr_vec, *biggest_vec); |
| 105 | + return amount_gt_pivot; |
| 106 | +} |
| 107 | +/* |
| 108 | + * Parition an array based on the pivot and returns the index of the |
| 109 | + * last element that is less than equal to the pivot. |
| 110 | + */ |
| 111 | +template <typename vtype, typename type_t> |
| 112 | +X86_SIMD_SORT_INLINE arrsize_t partition_avx512(type_t *arr, |
| 113 | + arrsize_t *arg, |
| 114 | + arrsize_t left, |
| 115 | + arrsize_t right, |
| 116 | + type_t pivot, |
| 117 | + type_t *smallest, |
| 118 | + type_t *biggest) |
| 119 | +{ |
| 120 | + /* make array length divisible by vtype::numlanes , shortening the array */ |
| 121 | + for (int32_t i = (right - left) % vtype::numlanes; i > 0; --i) { |
| 122 | + *smallest = std::min(*smallest, arr[arg[left]], comparison_func<vtype>); |
| 123 | + *biggest = std::max(*biggest, arr[arg[left]], comparison_func<vtype>); |
| 124 | + if (!comparison_func<vtype>(arr[arg[left]], pivot)) { |
| 125 | + std::swap(arg[left], arg[--right]); |
| 126 | + } |
| 127 | + else { |
| 128 | + ++left; |
| 129 | + } |
| 130 | + } |
| 131 | + |
| 132 | + if (left == right) |
| 133 | + return left; /* less than vtype::numlanes elements in the array */ |
| 134 | + |
| 135 | + using reg_t = typename vtype::reg_t; |
| 136 | + reg_t pivot_vec = vtype::set1(pivot); |
| 137 | + reg_t min_vec = vtype::set1(*smallest); |
| 138 | + reg_t max_vec = vtype::set1(*biggest); |
| 139 | + |
| 140 | + if (right - left == vtype::numlanes) { |
| 141 | + argreg_t argvec = argtype::loadu(arg + left); |
| 142 | + reg_t vec = vtype::i64gather(arr, arg + left); |
| 143 | + int32_t amount_gt_pivot = partition_vec<vtype>(arg, |
| 144 | + left, |
| 145 | + left + vtype::numlanes, |
| 146 | + argvec, |
| 147 | + vec, |
| 148 | + pivot_vec, |
| 149 | + &min_vec, |
| 150 | + &max_vec); |
| 151 | + *smallest = vtype::reducemin(min_vec); |
| 152 | + *biggest = vtype::reducemax(max_vec); |
| 153 | + return left + (vtype::numlanes - amount_gt_pivot); |
| 154 | + } |
| 155 | + |
| 156 | + // first and last vtype::numlanes values are partitioned at the end |
| 157 | + argreg_t argvec_left = argtype::loadu(arg + left); |
| 158 | + reg_t vec_left = vtype::i64gather(arr, arg + left); |
| 159 | + argreg_t argvec_right = argtype::loadu(arg + (right - vtype::numlanes)); |
| 160 | + reg_t vec_right = vtype::i64gather(arr, arg + (right - vtype::numlanes)); |
| 161 | + // store points of the vectors |
| 162 | + arrsize_t r_store = right - vtype::numlanes; |
| 163 | + arrsize_t l_store = left; |
| 164 | + // indices for loading the elements |
| 165 | + left += vtype::numlanes; |
| 166 | + right -= vtype::numlanes; |
| 167 | + while (right - left != 0) { |
| 168 | + argreg_t arg_vec; |
| 169 | + reg_t curr_vec; |
| 170 | + /* |
| 171 | + * if fewer elements are stored on the right side of the array, |
| 172 | + * then next elements are loaded from the right side, |
| 173 | + * otherwise from the left side |
| 174 | + */ |
| 175 | + if ((r_store + vtype::numlanes) - right < left - l_store) { |
| 176 | + right -= vtype::numlanes; |
| 177 | + arg_vec = argtype::loadu(arg + right); |
| 178 | + curr_vec = vtype::i64gather(arr, arg + right); |
| 179 | + } |
| 180 | + else { |
| 181 | + arg_vec = argtype::loadu(arg + left); |
| 182 | + curr_vec = vtype::i64gather(arr, arg + left); |
| 183 | + left += vtype::numlanes; |
| 184 | + } |
| 185 | + // partition the current vector and save it on both sides of the array |
| 186 | + int32_t amount_gt_pivot |
| 187 | + = partition_vec<vtype>(arg, |
| 188 | + l_store, |
| 189 | + r_store + vtype::numlanes, |
| 190 | + arg_vec, |
| 191 | + curr_vec, |
| 192 | + pivot_vec, |
| 193 | + &min_vec, |
| 194 | + &max_vec); |
| 195 | + ; |
| 196 | + r_store -= amount_gt_pivot; |
| 197 | + l_store += (vtype::numlanes - amount_gt_pivot); |
| 198 | + } |
| 199 | + |
| 200 | + /* partition and save vec_left and vec_right */ |
| 201 | + int32_t amount_gt_pivot = partition_vec<vtype>(arg, |
| 202 | + l_store, |
| 203 | + r_store + vtype::numlanes, |
| 204 | + argvec_left, |
| 205 | + vec_left, |
| 206 | + pivot_vec, |
| 207 | + &min_vec, |
| 208 | + &max_vec); |
| 209 | + l_store += (vtype::numlanes - amount_gt_pivot); |
| 210 | + amount_gt_pivot = partition_vec<vtype>(arg, |
| 211 | + l_store, |
| 212 | + l_store + vtype::numlanes, |
| 213 | + argvec_right, |
| 214 | + vec_right, |
| 215 | + pivot_vec, |
| 216 | + &min_vec, |
| 217 | + &max_vec); |
| 218 | + l_store += (vtype::numlanes - amount_gt_pivot); |
| 219 | + *smallest = vtype::reducemin(min_vec); |
| 220 | + *biggest = vtype::reducemax(max_vec); |
| 221 | + return l_store; |
| 222 | +} |
| 223 | + |
| 224 | +template <typename vtype, |
| 225 | + int num_unroll, |
| 226 | + typename type_t = typename vtype::type_t> |
| 227 | +X86_SIMD_SORT_INLINE arrsize_t partition_avx512_unrolled(type_t *arr, |
| 228 | + arrsize_t *arg, |
| 229 | + arrsize_t left, |
| 230 | + arrsize_t right, |
| 231 | + type_t pivot, |
| 232 | + type_t *smallest, |
| 233 | + type_t *biggest) |
| 234 | +{ |
| 235 | + if (right - left <= 8 * num_unroll * vtype::numlanes) { |
| 236 | + return partition_avx512<vtype>( |
| 237 | + arr, arg, left, right, pivot, smallest, biggest); |
| 238 | + } |
| 239 | + /* make array length divisible by vtype::numlanes , shortening the array */ |
| 240 | + for (int32_t i = ((right - left) % (num_unroll * vtype::numlanes)); i > 0; |
| 241 | + --i) { |
| 242 | + *smallest = std::min(*smallest, arr[arg[left]], comparison_func<vtype>); |
| 243 | + *biggest = std::max(*biggest, arr[arg[left]], comparison_func<vtype>); |
| 244 | + if (!comparison_func<vtype>(arr[arg[left]], pivot)) { |
| 245 | + std::swap(arg[left], arg[--right]); |
| 246 | + } |
| 247 | + else { |
| 248 | + ++left; |
| 249 | + } |
| 250 | + } |
| 251 | + |
| 252 | + if (left == right) |
| 253 | + return left; /* less than vtype::numlanes elements in the array */ |
| 254 | + |
| 255 | + using reg_t = typename vtype::reg_t; |
| 256 | + reg_t pivot_vec = vtype::set1(pivot); |
| 257 | + reg_t min_vec = vtype::set1(*smallest); |
| 258 | + reg_t max_vec = vtype::set1(*biggest); |
| 259 | + |
| 260 | + // first and last vtype::numlanes values are partitioned at the end |
| 261 | + reg_t vec_left[num_unroll], vec_right[num_unroll]; |
| 262 | + argreg_t argvec_left[num_unroll], argvec_right[num_unroll]; |
| 263 | + X86_SIMD_SORT_UNROLL_LOOP(8) |
| 264 | + for (int ii = 0; ii < num_unroll; ++ii) { |
| 265 | + argvec_left[ii] = argtype::loadu(arg + left + vtype::numlanes * ii); |
| 266 | + vec_left[ii] = vtype::i64gather(arr, arg + left + vtype::numlanes * ii); |
| 267 | + argvec_right[ii] = argtype::loadu( |
| 268 | + arg + (right - vtype::numlanes * (num_unroll - ii))); |
| 269 | + vec_right[ii] = vtype::i64gather( |
| 270 | + arr, arg + (right - vtype::numlanes * (num_unroll - ii))); |
| 271 | + } |
| 272 | + // store points of the vectors |
| 273 | + arrsize_t r_store = right - vtype::numlanes; |
| 274 | + arrsize_t l_store = left; |
| 275 | + // indices for loading the elements |
| 276 | + left += num_unroll * vtype::numlanes; |
| 277 | + right -= num_unroll * vtype::numlanes; |
| 278 | + while (right - left != 0) { |
| 279 | + argreg_t arg_vec[num_unroll]; |
| 280 | + reg_t curr_vec[num_unroll]; |
| 281 | + /* |
| 282 | + * if fewer elements are stored on the right side of the array, |
| 283 | + * then next elements are loaded from the right side, |
| 284 | + * otherwise from the left side |
| 285 | + */ |
| 286 | + if ((r_store + vtype::numlanes) - right < left - l_store) { |
| 287 | + right -= num_unroll * vtype::numlanes; |
| 288 | + X86_SIMD_SORT_UNROLL_LOOP(8) |
| 289 | + for (int ii = 0; ii < num_unroll; ++ii) { |
| 290 | + arg_vec[ii] |
| 291 | + = argtype::loadu(arg + right + ii * vtype::numlanes); |
| 292 | + curr_vec[ii] = vtype::i64gather( |
| 293 | + arr, arg + right + ii * vtype::numlanes); |
| 294 | + } |
| 295 | + } |
| 296 | + else { |
| 297 | + X86_SIMD_SORT_UNROLL_LOOP(8) |
| 298 | + for (int ii = 0; ii < num_unroll; ++ii) { |
| 299 | + arg_vec[ii] = argtype::loadu(arg + left + ii * vtype::numlanes); |
| 300 | + curr_vec[ii] = vtype::i64gather( |
| 301 | + arr, arg + left + ii * vtype::numlanes); |
| 302 | + } |
| 303 | + left += num_unroll * vtype::numlanes; |
| 304 | + } |
| 305 | + // partition the current vector and save it on both sides of the array |
| 306 | + X86_SIMD_SORT_UNROLL_LOOP(8) |
| 307 | + for (int ii = 0; ii < num_unroll; ++ii) { |
| 308 | + int32_t amount_gt_pivot |
| 309 | + = partition_vec<vtype>(arg, |
| 310 | + l_store, |
| 311 | + r_store + vtype::numlanes, |
| 312 | + arg_vec[ii], |
| 313 | + curr_vec[ii], |
| 314 | + pivot_vec, |
| 315 | + &min_vec, |
| 316 | + &max_vec); |
| 317 | + l_store += (vtype::numlanes - amount_gt_pivot); |
| 318 | + r_store -= amount_gt_pivot; |
| 319 | + } |
| 320 | + } |
| 321 | + |
| 322 | + /* partition and save vec_left and vec_right */ |
| 323 | + X86_SIMD_SORT_UNROLL_LOOP(8) |
| 324 | + for (int ii = 0; ii < num_unroll; ++ii) { |
| 325 | + int32_t amount_gt_pivot |
| 326 | + = partition_vec<vtype>(arg, |
| 327 | + l_store, |
| 328 | + r_store + vtype::numlanes, |
| 329 | + argvec_left[ii], |
| 330 | + vec_left[ii], |
| 331 | + pivot_vec, |
| 332 | + &min_vec, |
| 333 | + &max_vec); |
| 334 | + l_store += (vtype::numlanes - amount_gt_pivot); |
| 335 | + r_store -= amount_gt_pivot; |
| 336 | + } |
| 337 | + X86_SIMD_SORT_UNROLL_LOOP(8) |
| 338 | + for (int ii = 0; ii < num_unroll; ++ii) { |
| 339 | + int32_t amount_gt_pivot |
| 340 | + = partition_vec<vtype>(arg, |
| 341 | + l_store, |
| 342 | + r_store + vtype::numlanes, |
| 343 | + argvec_right[ii], |
| 344 | + vec_right[ii], |
| 345 | + pivot_vec, |
| 346 | + &min_vec, |
| 347 | + &max_vec); |
| 348 | + l_store += (vtype::numlanes - amount_gt_pivot); |
| 349 | + r_store -= amount_gt_pivot; |
| 350 | + } |
| 351 | + *smallest = vtype::reducemin(min_vec); |
| 352 | + *biggest = vtype::reducemax(max_vec); |
| 353 | + return l_store; |
| 354 | +} |
| 355 | + |
67 | 356 | template <typename vtype, typename type_t>
|
68 | 357 | X86_SIMD_SORT_INLINE void
|
69 | 358 | argsort_8_64bit(type_t *arr, arrsize_t *arg, int32_t N)
|
|
0 commit comments