@@ -972,11 +972,11 @@ The following aggregation methods are supported:
972
972
* * sum* - the sum of values
973
973
* * proportion* - the sum proportional to the overall total (weighted frequency)
974
974
* * proportion-facet* - the sum proportional to the facet total
975
- * * deviation* - the standard deviation
976
975
* * min* - the minimum value
977
976
* * max* - the maximum value
978
977
* * mean* - the mean value (average)
979
978
* * median* - the median value
979
+ * * deviation* - the standard deviation
980
980
* * variance* - the variance per [ Welford’s algorithm] ( https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm )
981
981
* a function to be passed the array of values for each bin
982
982
* an object with a * reduce* method
@@ -1079,11 +1079,11 @@ The following aggregation methods are supported:
1079
1079
* * sum* - the sum of values
1080
1080
* * proportion* - the sum proportional to the overall total (weighted frequency)
1081
1081
* * proportion-facet* - the sum proportional to the facet total
1082
- * * deviation* - the standard deviation
1083
1082
* * min* - the minimum value
1084
1083
* * max* - the maximum value
1085
1084
* * mean* - the mean value (average)
1086
1085
* * median* - the median value
1086
+ * * deviation* - the standard deviation
1087
1087
* * variance* - the variance per [ Welford’s algorithm] ( https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm )
1088
1088
* a function - passed the array of values for each group
1089
1089
* an object with a * reduce* method - passed the index for each group, and all values
@@ -1164,12 +1164,12 @@ The Plot.windowX and Plot.windowY transforms compute a moving window around each
1164
1164
1165
1165
The following window reducers are supported:
1166
1166
1167
- * * deviation* - the standard deviation
1168
1167
* * min* - the minimum
1169
1168
* * max* - the maximum
1170
1169
* * mean* - the mean (average)
1171
1170
* * median* - the median
1172
1171
* * sum* - the sum of values
1172
+ * * deviation* - the standard deviation
1173
1173
* * variance* - the variance per [ Welford’s algorithm] ( https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm )
1174
1174
* * difference* - the difference between the last and first window value
1175
1175
* * ratio* - the ratio of the last and first window value
@@ -1204,39 +1204,37 @@ Equivalent to Plot.map({y: *map*, y1: *map*, y2: *map*}, *options*), but ignores
1204
1204
Plot .normalizeX ({y: " Date" , x: " Close" , stroke: " Symbol" })
1205
1205
```
1206
1206
1207
- Similar to [ Plot.mapX] ( #plotmapxmap-options ) , but applies the normalize map method with the given * options* .
1207
+ Like [ Plot.mapX] ( #plotmapxmap-options ) , but applies the normalize map method with the given * options* .
1208
1208
1209
1209
#### Plot.normalizeY(* options* )
1210
1210
1211
1211
``` js
1212
1212
Plot .normalizeY ({x: " Date" , y: " Close" , stroke: " Symbol" })
1213
1213
```
1214
1214
1215
- Similar to [ Plot.mapY] ( #plotmapymap-options ) , but applies the normalize map method with the given * options* .
1215
+ Like [ Plot.mapY] ( #plotmapymap-options ) , but applies the normalize map method with the given * options* .
1216
1216
1217
1217
#### Plot.windowX(* options* )
1218
1218
1219
1219
``` js
1220
1220
Plot .windowX ({y: " Date" , x: " Anomaly" , k: 24 })
1221
1221
```
1222
1222
1223
- Similar to [ Plot.mapX] ( #plotmapxmap-options ) , but applies the window map method with the given * options* .
1223
+ Like [ Plot.mapX] ( #plotmapxmap-options ) , but applies the window map method with the given * options* .
1224
1224
1225
1225
#### Plot.windowY(* options* )
1226
1226
1227
1227
``` js
1228
1228
Plot .windowY ({x: " Date" , y: " Anomaly" , k: 24 })
1229
1229
```
1230
1230
1231
- Similar to [ Plot.mapY] ( #plotmapymap-options ) , but applies the window map method with the given * options* .
1231
+ Like [ Plot.mapY] ( #plotmapymap-options ) , but applies the window map method with the given * options* .
1232
1232
1233
1233
### Select
1234
1234
1235
1235
[ <img src =" ./img/select.png " width =" 320 " height =" 198 " alt =" a line chart of several stocks " >] ( https://observablehq.com/@data-workflows/plot-select )
1236
1236
1237
- [ Source] ( ./src/transforms/select.js ) · [ Examples] ( https://observablehq.com/@data-workflows/plot-select )
1238
-
1239
- The select transforms extract one (or possibly several) data points from a series. They can be used to label a line, or annotate an extremal value. Series are defined by * facet* and * z* (or * fill* or * stroke* ).
1237
+ [ Source] ( ./src/transforms/select.js ) · [ Examples] ( https://observablehq.com/@data-workflows/plot-select ) · Selects one (or possibly several) values from a series. The select transforms can be used to label a line or to annotate extreme values.
1240
1238
1241
1239
#### Plot.selectFirst(* options* )
1242
1240
0 commit comments