|
16 | 16 | #' @param dirichlet not yet implemented |
17 | 17 | #' @param proportion_model logical value for modeling the proportions data |
18 | 18 | #' @param BVS logical value for implementing Bayesian variable selection |
| 19 | +#' @param beta_proposal logical value to determine if betas' proposal is used in MH's proposal ratio for gammas |
| 20 | +#' @param zeta_proposal logical value to determine if zetas' proposal is used in MH's proposal ratio for etas |
19 | 21 | #' @param threads maximum threads used for parallelization. Default is 1 |
20 | 22 | #' @param gamma_prior one of \code{c("bernoulli", "MRF")} |
21 | 23 | #' @param gamma_sampler one of \code{c("mc3", "bandit")} |
|
30 | 32 | #' @param datX0 a matrix of mandatory variables |
31 | 33 | #' @param datProportionConst an array of cluster-specific proportions |
32 | 34 | #' |
33 | | -run_mcmc <- function(nIter, burnin, thin, n, nsamp, ninit, convex, npoint, dirichlet, proportion_model, BVS, threads, gamma_prior, gamma_sampler, eta_prior, eta_sampler, initList, rangeList, hyperparList, datEvent, datTime, datX, datX0, datProportionConst) { |
34 | | - .Call(`_GPTCM_run_mcmc`, nIter, burnin, thin, n, nsamp, ninit, convex, npoint, dirichlet, proportion_model, BVS, threads, gamma_prior, gamma_sampler, eta_prior, eta_sampler, initList, rangeList, hyperparList, datEvent, datTime, datX, datX0, datProportionConst) |
| 35 | +run_mcmc <- function(nIter, burnin, thin, n, nsamp, ninit, convex, npoint, dirichlet, proportion_model, BVS, beta_proposal, zeta_proposal, threads, gamma_prior, gamma_sampler, eta_prior, eta_sampler, initList, rangeList, hyperparList, datEvent, datTime, datX, datX0, datProportionConst) { |
| 36 | + .Call(`_GPTCM_run_mcmc`, nIter, burnin, thin, n, nsamp, ninit, convex, npoint, dirichlet, proportion_model, BVS, beta_proposal, zeta_proposal, threads, gamma_prior, gamma_sampler, eta_prior, eta_sampler, initList, rangeList, hyperparList, datEvent, datTime, datX, datX0, datProportionConst) |
35 | 37 | } |
36 | 38 |
|
0 commit comments