|
| 1 | +// ====------ asm_red.cu ---------------------------------- *- CUDA -* ---===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +// |
| 8 | +// ===---------------------------------------------------------------------===// |
| 9 | + |
| 10 | +#include "cuda.h" |
| 11 | +#include <cstdint> |
| 12 | +#include <cuda_runtime.h> |
| 13 | +#include <iostream> |
| 14 | + |
| 15 | +__global__ void relaxed_add_kernel(float *data, int n) { |
| 16 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; |
| 17 | + |
| 18 | + if (idx < n) { |
| 19 | + float value = data[idx]; |
| 20 | + |
| 21 | + asm volatile("red.relaxed.gpu.global.add.f32 [%0], %1;" |
| 22 | + : |
| 23 | + : "l"(data), "f"(value)); |
| 24 | + } |
| 25 | +} |
| 26 | + |
| 27 | +__global__ void relaxed_or_kernel(int *data, int n) { |
| 28 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; |
| 29 | + |
| 30 | + if (idx < n) { |
| 31 | + int value = data[idx]; |
| 32 | + |
| 33 | + asm volatile("red.relaxed.gpu.global.or.b32 [%0], %1;" |
| 34 | + : |
| 35 | + : "l"(data), "r"(value)); |
| 36 | + } |
| 37 | +} |
| 38 | + |
| 39 | +__global__ void relaxed_xor_kernel(int *data, int n) { |
| 40 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; |
| 41 | + |
| 42 | + if (idx < n) { |
| 43 | + int value = data[idx]; |
| 44 | + |
| 45 | + asm volatile("red.relaxed.gpu.global.xor.b32 [%0], %1;" |
| 46 | + : |
| 47 | + : "l"(data), "r"(value)); |
| 48 | + } |
| 49 | +} |
| 50 | + |
| 51 | +__global__ void relaxed_and_kernel(int *data, int n) { |
| 52 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; |
| 53 | + |
| 54 | + if (idx < n) { |
| 55 | + int value = data[idx]; |
| 56 | + |
| 57 | + asm volatile("red.relaxed.gpu.global.and.b32 [%0], %1;" |
| 58 | + : |
| 59 | + : "l"(data), "r"(value)); |
| 60 | + } |
| 61 | +} |
| 62 | + |
| 63 | +__global__ void relaxed_max_kernel(int *data, int n) { |
| 64 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; |
| 65 | + |
| 66 | + if (idx < n) { |
| 67 | + int value = data[idx]; |
| 68 | + |
| 69 | + asm volatile("red.relaxed.gpu.global.max.s32 [%0], %1;" |
| 70 | + : |
| 71 | + : "l"(data), "r"(value)); |
| 72 | + } |
| 73 | +} |
| 74 | + |
| 75 | +__global__ void relaxed_min_kernel(int *data, int n) { |
| 76 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; |
| 77 | + |
| 78 | + if (idx < n) { |
| 79 | + int value = data[idx]; |
| 80 | + |
| 81 | + asm volatile("red.relaxed.gpu.global.min.s32 [%0], %1;" |
| 82 | + : |
| 83 | + : "l"(data), "r"(value)); |
| 84 | + } |
| 85 | +} |
| 86 | + |
| 87 | +void relaxed_add_kernel_test(void) { |
| 88 | + const int size = 100; |
| 89 | + float *d_data, h_data[size]; |
| 90 | + |
| 91 | + // Initialize host data |
| 92 | + for (int i = 0; i < size; i++) { |
| 93 | + h_data[i] = static_cast<float>(i); |
| 94 | + } |
| 95 | + |
| 96 | + // Allocate device memory |
| 97 | + cudaMalloc(&d_data, size * sizeof(float)); |
| 98 | + |
| 99 | + // Copy data to device |
| 100 | + cudaMemcpy(d_data, h_data, size * sizeof(float), cudaMemcpyHostToDevice); |
| 101 | + |
| 102 | + relaxed_add_kernel<<<1, size>>>(d_data, size); |
| 103 | + cudaDeviceSynchronize(); |
| 104 | + // Copy results back to host |
| 105 | + cudaMemcpy(h_data, d_data, size * sizeof(float), cudaMemcpyDeviceToHost); |
| 106 | + |
| 107 | + // Free device memory |
| 108 | + cudaFree(d_data); |
| 109 | + |
| 110 | + if (h_data[0] != 4950) { |
| 111 | + std::cout << "add value: " << h_data[0] << std::endl; |
| 112 | + std::cout << "relaxed_add_kernel_test run failed!\n"; |
| 113 | + exit(-1); |
| 114 | + } |
| 115 | + std::cout << "relaxed_add_kernel_test run passed!\n"; |
| 116 | +} |
| 117 | + |
| 118 | +void relaxed_or_kernel_test(void) { |
| 119 | + const int size = 50; |
| 120 | + int *d_data, h_data[size]; |
| 121 | + |
| 122 | + // Initialize host data |
| 123 | + for (int i = 0; i < size; i++) { |
| 124 | + h_data[i] = 0xF; |
| 125 | + } |
| 126 | + |
| 127 | + // Allocate device memory |
| 128 | + cudaMalloc(&d_data, size * sizeof(int)); |
| 129 | + |
| 130 | + // Copy data to device |
| 131 | + cudaMemcpy(d_data, h_data, size * sizeof(int), cudaMemcpyHostToDevice); |
| 132 | + |
| 133 | + relaxed_or_kernel<<<1, size>>>(d_data, size); |
| 134 | + cudaDeviceSynchronize(); |
| 135 | + // Copy results back to host |
| 136 | + cudaMemcpy(h_data, d_data, size * sizeof(int), cudaMemcpyDeviceToHost); |
| 137 | + |
| 138 | + // Free device memory |
| 139 | + cudaFree(d_data); |
| 140 | + |
| 141 | + if (h_data[0] != 0xF) { |
| 142 | + std::cout << "or value: " << h_data[0] << std::endl; |
| 143 | + std::cout << "relaxed_or_kernel_test run failed!\n"; |
| 144 | + exit(-1); |
| 145 | + } |
| 146 | + std::cout << "relaxed_or_kernel_test run passed!\n"; |
| 147 | +} |
| 148 | + |
| 149 | +void relaxed_xor_kernel_test(void) { |
| 150 | + const int size = 2; |
| 151 | + int *d_data, h_data[size]; |
| 152 | + |
| 153 | + // Initialize host data |
| 154 | + for (int i = 0; i < size; i++) { |
| 155 | + h_data[i] = 0xFFFFFFFF; |
| 156 | + } |
| 157 | + |
| 158 | + // Allocate device memory |
| 159 | + cudaMalloc(&d_data, size * sizeof(int)); |
| 160 | + |
| 161 | + // Copy data to device |
| 162 | + cudaMemcpy(d_data, h_data, size * sizeof(int), cudaMemcpyHostToDevice); |
| 163 | + |
| 164 | + relaxed_xor_kernel<<<1, size>>>(d_data, size); |
| 165 | + cudaDeviceSynchronize(); |
| 166 | + // Copy results back to host |
| 167 | + cudaMemcpy(h_data, d_data, size * sizeof(int), cudaMemcpyDeviceToHost); |
| 168 | + |
| 169 | + // Free device memory |
| 170 | + cudaFree(d_data); |
| 171 | + |
| 172 | + if (h_data[0] != 0x0) { |
| 173 | + std::cout << "xor value: " << h_data[0] << std::endl; |
| 174 | + std::cout << "relaxed_xor_kernel_test run failed!\n"; |
| 175 | + exit(-1); |
| 176 | + } |
| 177 | + std::cout << "relaxed_xor_kernel_test run passed!\n"; |
| 178 | +} |
| 179 | + |
| 180 | +void relaxed_and_kernel_test(void) { |
| 181 | + const int size = 32; |
| 182 | + int *d_data, h_data[size]; |
| 183 | + |
| 184 | + // Initialize host data |
| 185 | + for (int i = 0; i < size; i++) { |
| 186 | + h_data[i] = 0xF; |
| 187 | + } |
| 188 | + |
| 189 | + // Allocate device memory |
| 190 | + cudaMalloc(&d_data, size * sizeof(int)); |
| 191 | + |
| 192 | + // Copy data to device |
| 193 | + cudaMemcpy(d_data, h_data, size * sizeof(int), cudaMemcpyHostToDevice); |
| 194 | + |
| 195 | + relaxed_and_kernel<<<1, size>>>(d_data, size); |
| 196 | + cudaDeviceSynchronize(); |
| 197 | + // Copy results back to host |
| 198 | + cudaMemcpy(h_data, d_data, size * sizeof(int), cudaMemcpyDeviceToHost); |
| 199 | + |
| 200 | + // Free device memory |
| 201 | + cudaFree(d_data); |
| 202 | + |
| 203 | + if (h_data[0] != 0xF) { |
| 204 | + std::cout << "and value: " << h_data[0] << std::endl; |
| 205 | + std::cout << "relaxed_and_kernel_test run failed!\n"; |
| 206 | + exit(-1); |
| 207 | + } |
| 208 | + std::cout << "relaxed_and_kernel_test run passed!\n"; |
| 209 | +} |
| 210 | + |
| 211 | +void relaxed_max_kernel_test(void) { |
| 212 | + const int size = 100; |
| 213 | + int *d_data, h_data[size]; |
| 214 | + |
| 215 | + // Initialize host data |
| 216 | + for (int i = 0; i < size; i++) { |
| 217 | + h_data[i] = i; |
| 218 | + } |
| 219 | + |
| 220 | + // Allocate device memory |
| 221 | + cudaMalloc(&d_data, size * sizeof(float)); |
| 222 | + |
| 223 | + // Copy data to device |
| 224 | + cudaMemcpy(d_data, h_data, size * sizeof(float), cudaMemcpyHostToDevice); |
| 225 | + |
| 226 | + relaxed_max_kernel<<<1, size>>>(d_data, size); |
| 227 | + cudaDeviceSynchronize(); |
| 228 | + // Copy results back to host |
| 229 | + cudaMemcpy(h_data, d_data, size * sizeof(float), cudaMemcpyDeviceToHost); |
| 230 | + |
| 231 | + // Free device memory |
| 232 | + cudaFree(d_data); |
| 233 | + |
| 234 | + if (h_data[0] != 99) { |
| 235 | + std::cout << "max value: " << h_data[0] << std::endl; |
| 236 | + std::cout << "relaxed_max_kernel_test run failed!\n"; |
| 237 | + exit(-1); |
| 238 | + } |
| 239 | + std::cout << "relaxed_max_kernel_test run passed!\n"; |
| 240 | +} |
| 241 | + |
| 242 | +void relaxed_min_kernel_test(void) { |
| 243 | + const int size = 100; |
| 244 | + int *d_data, h_data[size]; |
| 245 | + |
| 246 | + // Initialize host data |
| 247 | + for (int i = 0; i < size; i++) { |
| 248 | + h_data[i] = i; |
| 249 | + } |
| 250 | + |
| 251 | + // Allocate device memory |
| 252 | + cudaMalloc(&d_data, size * sizeof(float)); |
| 253 | + |
| 254 | + // Copy data to device |
| 255 | + cudaMemcpy(d_data, h_data, size * sizeof(float), cudaMemcpyHostToDevice); |
| 256 | + |
| 257 | + relaxed_min_kernel<<<1, size>>>(d_data, size); |
| 258 | + cudaDeviceSynchronize(); |
| 259 | + // Copy results back to host |
| 260 | + cudaMemcpy(h_data, d_data, size * sizeof(float), cudaMemcpyDeviceToHost); |
| 261 | + |
| 262 | + // Free device memory |
| 263 | + cudaFree(d_data); |
| 264 | + |
| 265 | + if (h_data[0] != 0) { |
| 266 | + std::cout << "min value: " << h_data[0] << std::endl; |
| 267 | + std::cout << "relaxed_min_kernel_test run failed!\n"; |
| 268 | + exit(-1); |
| 269 | + } |
| 270 | + std::cout << "relaxed_min_kernel_test run passed!\n"; |
| 271 | +} |
| 272 | + |
| 273 | +int main() { |
| 274 | + relaxed_add_kernel_test(); |
| 275 | + relaxed_or_kernel_test(); |
| 276 | + relaxed_xor_kernel_test(); |
| 277 | + relaxed_and_kernel_test(); |
| 278 | + relaxed_max_kernel_test(); |
| 279 | + relaxed_min_kernel_test(); |
| 280 | + |
| 281 | + return 0; |
| 282 | +} |
0 commit comments