|
| 1 | +// SPDX-FileCopyrightText: Intel Corporation |
| 2 | +// |
| 3 | +// SPDX-License-Identifier: BSD-3-Clause |
| 4 | + |
| 5 | +#include "mpi.h" |
| 6 | + |
| 7 | +#include "../common/dr_bench.hpp" |
| 8 | +#include "dr/mp.hpp" |
| 9 | +#include <filesystem> |
| 10 | +#include <fmt/core.h> |
| 11 | +#include <fstream> |
| 12 | +#include <random> |
| 13 | +#include <sstream> |
| 14 | + |
| 15 | +namespace mp = dr::mp; |
| 16 | + |
| 17 | +namespace { |
| 18 | +std::size_t getWidth() { |
| 19 | + return 8; // default_vector_size / 100000; |
| 20 | +} |
| 21 | +} // namespace |
| 22 | +static auto getMatrix() { |
| 23 | + // size below is useful when testing weak scaling with default vector size |
| 24 | + // using dr-bench it creates matrix which non-zero element count increases |
| 25 | + // linearly when we increase default_vector_size std::size_t n = std::max(1., |
| 26 | + // std::sqrt(default_vector_size / 100000)) * 50000; |
| 27 | + |
| 28 | + std::size_t density_scalar = 50; |
| 29 | + |
| 30 | + std::size_t n = |
| 31 | + std::max(1., std::sqrt(default_vector_size * density_scalar / 2)); |
| 32 | + |
| 33 | + std::size_t up = n / density_scalar; |
| 34 | + std::size_t down = n / density_scalar; |
| 35 | + fmt::print("Generate matrix"); |
| 36 | + auto tmp = dr::generate_band_csr<double, long>(n, up, down); |
| 37 | + fmt::print("generated!"); |
| 38 | + return tmp; |
| 39 | +} |
| 40 | + |
| 41 | +static void GemvEq_DR(benchmark::State &state) { |
| 42 | + auto local_data = getMatrix(); |
| 43 | + |
| 44 | + mp::distributed_sparse_matrix< |
| 45 | + double, long, dr::mp::MpiBackend, |
| 46 | + dr::mp::csr_eq_distribution<double, long, dr::mp::MpiBackend>> |
| 47 | + m(local_data, 0); |
| 48 | + auto n = m.shape()[1]; |
| 49 | + auto width = getWidth(); |
| 50 | + std::vector<double> base_a(n * width); |
| 51 | + for (int j = 0; j < width; j++) { |
| 52 | + for (int i = 0; i < n; i++) { |
| 53 | + base_a[i + j * n] = i * j + 1; |
| 54 | + } |
| 55 | + } |
| 56 | + dr::mp::broadcasted_slim_matrix<double> allocated_a; |
| 57 | + allocated_a.broadcast_data(n, width, 0, base_a, dr::mp::default_comm()); |
| 58 | + |
| 59 | + std::vector<double> res(m.shape().first * width); |
| 60 | + gemv(0, res, m, allocated_a); |
| 61 | + for (auto _ : state) { |
| 62 | + gemv(0, res, m, allocated_a); |
| 63 | + } |
| 64 | +} |
| 65 | + |
| 66 | +DR_BENCHMARK(GemvEq_DR); |
| 67 | + |
| 68 | +static void GemvRow_DR(benchmark::State &state) { |
| 69 | + auto local_data = getMatrix(); |
| 70 | + |
| 71 | + mp::distributed_sparse_matrix< |
| 72 | + double, long, dr::mp::MpiBackend, |
| 73 | + dr::mp::csr_row_distribution<double, long, dr::mp::MpiBackend>> |
| 74 | + m(local_data, 0); |
| 75 | + auto n = m.shape()[1]; |
| 76 | + auto width = getWidth(); |
| 77 | + std::vector<double> base_a(n * width); |
| 78 | + for (int j = 0; j < width; j++) { |
| 79 | + for (int i = 0; i < n; i++) { |
| 80 | + base_a[i + j * n] = i * j + 1; |
| 81 | + } |
| 82 | + } |
| 83 | + dr::mp::broadcasted_slim_matrix<double> allocated_a; |
| 84 | + allocated_a.broadcast_data(n, width, 0, base_a, dr::mp::default_comm()); |
| 85 | + |
| 86 | + std::vector<double> res(m.shape().first * width); |
| 87 | + gemv(0, res, m, allocated_a); |
| 88 | + for (auto _ : state) { |
| 89 | + gemv(0, res, m, allocated_a); |
| 90 | + } |
| 91 | +} |
| 92 | + |
| 93 | +DR_BENCHMARK(GemvRow_DR); |
| 94 | + |
| 95 | +static void Gemv_Reference(benchmark::State &state) { |
| 96 | + auto local_data = getMatrix(); |
| 97 | + auto nnz_count = local_data.size(); |
| 98 | + auto band_shape = local_data.shape(); |
| 99 | + auto q = get_queue(); |
| 100 | + auto policy = oneapi::dpl::execution::make_device_policy(q); |
| 101 | + auto val_ptr = sycl::malloc_device<double>(nnz_count, q); |
| 102 | + auto col_ptr = sycl::malloc_device<long>(nnz_count, q); |
| 103 | + auto row_ptr = sycl::malloc_device<long>((band_shape[0] + 1), q); |
| 104 | + std::vector<double> b; |
| 105 | + auto width = getWidth(); |
| 106 | + for (auto i = 0; i < band_shape[1] * width; i++) { |
| 107 | + b.push_back(i); |
| 108 | + } |
| 109 | + double *elems = new double[band_shape[0] * width]; |
| 110 | + auto input = sycl::malloc_device<double>(band_shape[1] * width, q); |
| 111 | + auto output = sycl::malloc_device<double>(band_shape[0] * width, q); |
| 112 | + q.memcpy(val_ptr, local_data.values_data(), nnz_count * sizeof(double)) |
| 113 | + .wait(); |
| 114 | + q.memcpy(col_ptr, local_data.colind_data(), nnz_count * sizeof(long)).wait(); |
| 115 | + q.memcpy(row_ptr, local_data.rowptr_data(), |
| 116 | + (band_shape[0] + 1) * sizeof(long)) |
| 117 | + .wait(); |
| 118 | + q.fill(output, 0, band_shape[0] * width); |
| 119 | + std::copy(policy, b.begin(), b.end(), input); |
| 120 | + |
| 121 | + auto wg = 32; |
| 122 | + while (width * band_shape[0] * wg > INT_MAX) { |
| 123 | + wg /= 2; |
| 124 | + } |
| 125 | + assert(wg > 0); |
| 126 | + |
| 127 | + for (auto _ : state) { |
| 128 | + if (dr::mp::use_sycl()) { |
| 129 | + dr::mp::sycl_queue() |
| 130 | + .submit([&](auto &&h) { |
| 131 | + h.parallel_for( |
| 132 | + sycl::nd_range<1>(width * band_shape[0] * wg, wg), |
| 133 | + [=](auto item) { |
| 134 | + auto input_j = item.get_group(0) / band_shape[0]; |
| 135 | + auto idx = item.get_group(0) % band_shape[0]; |
| 136 | + auto local_id = item.get_local_id(); |
| 137 | + auto group_size = item.get_local_range(0); |
| 138 | + double sum = 0; |
| 139 | + auto start = row_ptr[idx]; |
| 140 | + auto end = row_ptr[idx + 1]; |
| 141 | + for (auto i = start + local_id; i < end; i += group_size) { |
| 142 | + auto colNum = col_ptr[i]; |
| 143 | + auto vectorVal = input[colNum + input_j * band_shape[1]]; |
| 144 | + auto matrixVal = val_ptr[i]; |
| 145 | + sum += matrixVal * vectorVal; |
| 146 | + } |
| 147 | + sycl::atomic_ref<double, sycl::memory_order::relaxed, |
| 148 | + sycl::memory_scope::device> |
| 149 | + c_ref(output[idx + band_shape[0] * input_j]); |
| 150 | + c_ref += sum; |
| 151 | + }); |
| 152 | + }) |
| 153 | + .wait(); |
| 154 | + q.memcpy(elems, output, band_shape[0] * sizeof(double) * width).wait(); |
| 155 | + } else { |
| 156 | + std::fill(elems, elems + band_shape[0] * width, 0); |
| 157 | + auto local_rows = local_data.rowptr_data(); |
| 158 | + auto row_i = 0; |
| 159 | + auto current_row_position = local_rows[1]; |
| 160 | + |
| 161 | + for (int i = 0; i < nnz_count; i++) { |
| 162 | + while (row_i + 1 < band_shape[0] && i >= current_row_position) { |
| 163 | + row_i++; |
| 164 | + current_row_position = local_rows[row_i + 1]; |
| 165 | + } |
| 166 | + for (auto j = 0; j < width; j++) { |
| 167 | + auto item_id = row_i + j * band_shape[0]; |
| 168 | + auto val_index = local_data.colind_data()[i] + j * band_shape[0]; |
| 169 | + auto value = b[val_index]; |
| 170 | + auto matrix_value = local_data.values_data()[i]; |
| 171 | + elems[item_id] += matrix_value * value; |
| 172 | + } |
| 173 | + } |
| 174 | + } |
| 175 | + } |
| 176 | + delete[] elems; |
| 177 | + sycl::free(val_ptr, q); |
| 178 | + sycl::free(col_ptr, q); |
| 179 | + sycl::free(row_ptr, q); |
| 180 | + sycl::free(input, q); |
| 181 | + sycl::free(output, q); |
| 182 | +} |
| 183 | + |
| 184 | +static void GemvEq_Reference(benchmark::State &state) { Gemv_Reference(state); } |
| 185 | + |
| 186 | +static void GemvRow_Reference(benchmark::State &state) { |
| 187 | + Gemv_Reference(state); |
| 188 | +} |
| 189 | + |
| 190 | +DR_BENCHMARK(GemvEq_Reference); |
| 191 | + |
| 192 | +DR_BENCHMARK(GemvRow_Reference); |
0 commit comments