|
47 | 47 | "source": [
|
48 | 48 | "import string\n",
|
49 | 49 | "import requests\n",
|
| 50 | + "import os\n", |
50 | 51 | "\n",
|
51 | 52 | "response = requests.get('https://www.gutenberg.org/cache/epub/1497/pg1497.txt')\n",
|
52 | 53 | "data = response.text.split('\\n')\n",
|
|
253 | 254 | "metadata": {},
|
254 | 255 | "outputs": [],
|
255 | 256 | "source": [
|
| 257 | + "num_epochs = 200\n", |
| 258 | + "# For custom epochs numbers from the environment\n", |
| 259 | + "if \"ITEX_NUM_EPOCHS\" in os.environ:\n", |
| 260 | + " num_epochs = int(os.environ.get('ITEX_NUM_EPOCHS'))\n", |
| 261 | + "\n", |
256 | 262 | "neuron_coef = 4\n",
|
257 | 263 | "itex_lstm_model = Sequential()\n",
|
258 | 264 | "itex_lstm_model.add(Embedding(input_dim=vocab_size, output_dim=seq_length, input_length=seq_length))\n",
|
|
262 | 268 | "itex_lstm_model.add(Dense(units=vocab_size, activation='softmax'))\n",
|
263 | 269 | "itex_lstm_model.summary()\n",
|
264 | 270 | "itex_lstm_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
265 |
| - "itex_lstm_model.fit(x,y, batch_size=256, epochs=200)" |
| 271 | + "itex_lstm_model.fit(x,y, batch_size=256, epochs=num_epochs)" |
266 | 272 | ]
|
267 | 273 | },
|
268 | 274 | {
|
|
296 | 302 | "seq_length = x.shape[1]\n",
|
297 | 303 | "vocab_size = y.shape[1]\n",
|
298 | 304 | "\n",
|
| 305 | + "num_epochs = 20\n", |
| 306 | + "# For custom epochs numbers\n", |
| 307 | + "if \"KERAS_NUM_EPOCHS\" in os.environ:\n", |
| 308 | + " num_epochs = int(os.environ.get('KERAS_NUM_EPOCHS'))\n", |
| 309 | + "\n", |
299 | 310 | "neuron_coef = 1\n",
|
300 | 311 | "keras_lstm_model = Sequential()\n",
|
301 | 312 | "keras_lstm_model.add(Embedding(input_dim=vocab_size, output_dim=seq_length, input_length=seq_length))\n",
|
|
305 | 316 | "keras_lstm_model.add(Dense(units=vocab_size, activation='softmax'))\n",
|
306 | 317 | "keras_lstm_model.summary()\n",
|
307 | 318 | "keras_lstm_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
308 |
| - "keras_lstm_model.fit(x,y, batch_size=256, epochs=20)" |
| 319 | + "keras_lstm_model.fit(x,y, batch_size=256, epochs=num_epochs)" |
309 | 320 | ]
|
310 | 321 | },
|
311 | 322 | {
|
|
0 commit comments