@@ -83,29 +83,26 @@ def __init_(self):
83
83
84
84
def load_log (self , log ):
85
85
self .filename = log
86
- self .with_timestamp = True
87
- data = self .load_log_dnnl_timestamp_backend (log )
88
- count = data ['time' ].count ()
89
-
90
- if count <= 1 :
91
- data = self .load_log_dnnl_timestamp (log )
92
- count = data ['time' ].count ()
93
- self .with_timestamp = True
94
86
95
- if count <= 1 :
96
- data = self .load_log_dnnl_backend (log )
97
- count = data ['time' ].count ()
87
+ fn_t_list = [self .load_log_dnnl_timestamp_backend , self .load_log_dnnl_timestamp ]
88
+ fn_not_list = [self .load_log_dnnl_backend , self .load_log_dnnl , self .load_log_mkldnn ]
89
+
90
+ fn_list = fn_not_list
91
+ self .with_timestamp = False
92
+
93
+ data = fn_t_list [0 ](log )
94
+ for d in data ['timestamp' ]:
95
+ if self .is_float (d ) is True :
98
96
self .with_timestamp = False
97
+ fn_list = fn_t_list
99
98
100
- if count <= 1 :
101
- data = self .load_log_dnnl (log )
102
- count = data ['time' ].count ()
103
- self .with_timestamp = False
104
-
105
- if count == 0 :
106
- data = self .load_log_mkldnn (log )
99
+
100
+ for index , fn in enumerate (fn_list ):
101
+ data = fn (log )
107
102
count = data ['time' ].count ()
108
- self .with_timestamp = False
103
+ if count > 2 :
104
+ print (index )
105
+ break
109
106
110
107
exec_data = data [data ['exec' ] == 'exec' ]
111
108
self .data = data
@@ -150,7 +147,7 @@ def load_log_dnnl_backend(self, log):
150
147
151
148
def load_log_dnnl_timestamp_backend (self , log ):
152
149
import pandas as pd
153
- # dnnl_verbose,629411020589.218018,primitive,exec,cpu,convolution,jit:avx2,forward_inference,src_f32::blocked:abcd:f0 wei_f32::blocked:Acdb8a:f0 bia_f32::blocked:a:f0 dst_f32::blocked:aBcd8b:f0,,alg:convolution_direct,mb1_ic3oc96_ih227oh55kh11sh4dh0ph0_iw227ow55kw11sw4dw0pw0,1.21704
150
+ #dnnl_verbose,629411020589.218018,primitive,exec,cpu,convolution,jit:avx2,forward_inference,src_f32::blocked:abcd:f0 wei_f32::blocked:Acdb8a:f0 bia_f32::blocked:a:f0 dst_f32::blocked:aBcd8b:f0,,alg:convolution_direct,mb1_ic3oc96_ih227oh55kh11sh4dh0ph0_iw227ow55kw11sw4dw0pw0,1.21704
154
151
data = pd .read_csv (log , names = [ 'dnnl_verbose' ,'timestamp' ,'backend' ,'exec' ,'arch' ,'type' , 'jit' , 'pass' , 'fmt' , 'opt' , 'alg' , 'shape' , 'time' , 'dummy' ], engine = 'python' )
155
152
return data
156
153
@@ -160,6 +157,15 @@ def load_log_mkldnn(self, log):
160
157
print ("load_log_mkldnn" )
161
158
data = pd .read_csv (log , names = [ 'mkldnn_verbose' ,'exec' ,'type' , 'jit' , 'pass' , 'fmt' , 'alg' , 'shape' , 'time' ], engine = 'python' )
162
159
return data
160
+ def is_float (self , num ):
161
+ if type (num ) is not str :
162
+ return False
163
+ try :
164
+ float (num )
165
+ return True
166
+ except ValueError :
167
+ return False
168
+
163
169
164
170
165
171
class oneDNNUtils :
0 commit comments