|
| 1 | +/*============================================================== |
| 2 | + * Copyright © 2023 Intel Corporation |
| 3 | + * |
| 4 | + * SPDX-License-Identifier: MIT |
| 5 | + * ============================================================= */ |
| 6 | + |
| 7 | +/* Distributed Jacobian computation sample using OpenMP GPU offload and MPI-3 one-sided. |
| 8 | + */ |
| 9 | +#include "mpi.h" |
| 10 | + |
| 11 | +#ifndef MPI_ERR_INVALID_NOTIFICATION |
| 12 | +/*For Intel MPI 2021.13/14 we have to use API compatibility layer*/ |
| 13 | +#include "mpix_compat.h" |
| 14 | +#endif |
| 15 | +#include <sycl.hpp> |
| 16 | +#include <vector> |
| 17 | +#include <iostream> |
| 18 | + |
| 19 | +const int Nx = 16384; /* Grid size */ |
| 20 | +const int Ny = Nx; |
| 21 | +const int Niter = 100; /* Nuber of algorithm iterations */ |
| 22 | +const int NormIteration = 0; /* Recaluculate norm after given number of iterations. 0 to disable norm calculation */ |
| 23 | +const int PrintTime = 1; /* Output overall time of compute/communication part */ |
| 24 | + |
| 25 | +struct subarray { |
| 26 | + int rank, comm_size; /* MPI rank and communicator size */ |
| 27 | + int x_size, y_size; /* Subarray size excluding border rows and columns */ |
| 28 | + MPI_Aint l_nbh_offt; /* Offset predecessor data to update */ |
| 29 | +}; |
| 30 | + |
| 31 | +#define ROW_SIZE(S) ((S).x_size + 2) |
| 32 | +#define XY_2_IDX(X,Y,S) (((Y)+1)*ROW_SIZE(S)+((X)+1)) |
| 33 | + |
| 34 | +/* Subroutine to create and initialize initial state of input subarrays */ |
| 35 | +void InitDeviceArrays(double **A_dev_1, double **A_dev_2, sycl::queue q, struct subarray *sub) |
| 36 | +{ |
| 37 | + size_t total_size = (sub->x_size + 2) * (sub->y_size + 2); |
| 38 | + |
| 39 | + double *A = sycl::malloc_host < double >(total_size, q); |
| 40 | + *A_dev_1 = sycl::malloc_device < double >(total_size, q); |
| 41 | + *A_dev_2 = sycl::malloc_device < double >(total_size, q); |
| 42 | + |
| 43 | + for (int i = 0; i < (sub->y_size + 2); i++) |
| 44 | + for (int j = 0; j < (sub->x_size + 2); j++) |
| 45 | + A[i * (sub->x_size + 2) + j] = 0.0; |
| 46 | + |
| 47 | + if (sub->rank == 0) /* set top boundary */ |
| 48 | + for (int i = 1; i <= sub->x_size; i++) |
| 49 | + A[i] = 1.0; /* set bottom boundary */ |
| 50 | + if (sub->rank == (sub->comm_size - 1)) |
| 51 | + for (int i = 1; i <= sub->x_size; i++) |
| 52 | + A[(sub->x_size + 2) * (sub->y_size + 1) + i] = 10.0; |
| 53 | + |
| 54 | + for (int i = 1; i <= sub->y_size; i++) { |
| 55 | + int row_offt = i * (sub->x_size + 2); |
| 56 | + A[row_offt] = 1.0; /* set left boundary */ |
| 57 | + A[row_offt + sub->x_size + 1] = 1.0; /* set right boundary */ |
| 58 | + } |
| 59 | + |
| 60 | + /* Move input arrays to device */ |
| 61 | + q.memcpy(*A_dev_1, A, sizeof(double) * total_size); |
| 62 | + q.memcpy(*A_dev_2, A, sizeof(double) * total_size); |
| 63 | + q.wait(); |
| 64 | + sycl::free(A, q); |
| 65 | + A = NULL; |
| 66 | +} |
| 67 | + |
| 68 | +/* Setup subarray size and layout processed by current rank */ |
| 69 | +void GetMySubarray(struct subarray *sub) |
| 70 | +{ |
| 71 | + MPI_Comm_size(MPI_COMM_WORLD, &sub->comm_size); |
| 72 | + MPI_Comm_rank(MPI_COMM_WORLD, &sub->rank); |
| 73 | + sub->y_size = Ny / sub->comm_size; |
| 74 | + sub->x_size = Nx; |
| 75 | + sub->l_nbh_offt = (sub->x_size + 2) * (sub->y_size + 1) + 1; |
| 76 | + |
| 77 | + |
| 78 | + int tail = sub->y_size % sub->comm_size; |
| 79 | + if (tail != 0) { |
| 80 | + if (sub->rank < tail) |
| 81 | + sub->y_size++; |
| 82 | + if ((sub->rank > 0) && ((sub->rank - 1) < tail)) |
| 83 | + sub->l_nbh_offt += (sub->x_size + 2); |
| 84 | + } |
| 85 | +} |
| 86 | + |
| 87 | +int main(int argc, char *argv[]) |
| 88 | +{ |
| 89 | + double t_start; |
| 90 | + struct subarray my_subarray = { }; |
| 91 | + double *A_device[2] = { }; |
| 92 | + MPI_Win win[2] = { MPI_WIN_NULL, MPI_WIN_NULL }; |
| 93 | + int batch_iters = 0; |
| 94 | + int passed_iters = 0; |
| 95 | + double norm = 0.0; |
| 96 | + int provided; |
| 97 | + |
| 98 | + /* Initialization of runtime and initial state of data */ |
| 99 | + sycl::queue q(sycl::gpu_selector_v); |
| 100 | + /* MPI_THREAD_MULTIPLE is required for device-initiated communications */ |
| 101 | + MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided); |
| 102 | + GetMySubarray(&my_subarray); |
| 103 | + InitDeviceArrays(&A_device[0], &A_device[1], q, &my_subarray); |
| 104 | + |
| 105 | +#ifdef GROUP_SIZE_DEFAULT |
| 106 | + int work_group_size = GROUP_SIZE_DEFAULT; |
| 107 | +#else |
| 108 | + int work_group_size = |
| 109 | + q.get_device().get_info<sycl::info::device::max_work_group_size>(); |
| 110 | +#endif |
| 111 | + |
| 112 | + if ((Nx % work_group_size) != 0) { |
| 113 | + if (my_subarray.rank == 0) { |
| 114 | + printf("For simplification, sycl::info::device::max_work_group_size should be divider of X dimention of array\n"); |
| 115 | + printf("Please adjust matrix size, or define GROUP_SIZE_DEFAULT\n"); |
| 116 | + printf("sycl::info::device::max_work_group_size=%d Nx=%d (%d)\n", work_group_size, Nx, work_group_size % Nx); |
| 117 | + MPI_Abort(MPI_COMM_WORLD, -1); |
| 118 | + } |
| 119 | + } |
| 120 | + /* Create RMA window using device memory */ |
| 121 | + MPI_Win_create(A_device[0], |
| 122 | + sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), |
| 123 | + sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[0]); |
| 124 | + MPI_Win_create(A_device[1], |
| 125 | + sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), |
| 126 | + sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[1]); |
| 127 | + MPI_Win_notify_attach(&win[0], 1, MPI_INFO_NULL); |
| 128 | + MPI_Win_notify_attach(&win[1], 1, MPI_INFO_NULL); |
| 129 | + /* Start RMA exposure epoch */ |
| 130 | + MPI_Win_lock_all(0, win[0]); |
| 131 | + MPI_Win_lock_all(0, win[1]); |
| 132 | + |
| 133 | + if (PrintTime) { |
| 134 | + t_start = MPI_Wtime(); |
| 135 | + } |
| 136 | + |
| 137 | + |
| 138 | + int iterations_batch = (NormIteration <= 0) ? Niter : NormIteration; |
| 139 | + for (passed_iters = 0; passed_iters < Niter; passed_iters += iterations_batch) { |
| 140 | + |
| 141 | + /* Submit compute kernel to calculate next "iterations_batch" steps */ |
| 142 | + q.submit([&](auto & h) { |
| 143 | + h.parallel_for(sycl::nd_range<1>(work_group_size, work_group_size), |
| 144 | + [=](sycl::nd_item<1> item) { |
| 145 | + int local_id = item.get_local_id(); |
| 146 | + int col_per_wg = my_subarray.x_size / work_group_size; |
| 147 | + |
| 148 | + int my_x_lb = col_per_wg * local_id; |
| 149 | + int my_x_ub = my_x_lb + col_per_wg; |
| 150 | + |
| 151 | + for (int k = 0; k < iterations_batch; ++k) |
| 152 | + { |
| 153 | + int i = passed_iters + k; |
| 154 | + MPI_Win cwin = win[(i + 1) % 2]; |
| 155 | + MPI_Count c_expected = 0; |
| 156 | + double *a = A_device[i % 2]; |
| 157 | + double *a_out = A_device[(i + 1) % 2]; |
| 158 | + |
| 159 | + /* Calculate values on borders to initiate communications early */ |
| 160 | + for (int column = my_x_lb; column < my_x_ub; column ++) { |
| 161 | + int idx = XY_2_IDX(column, 0, my_subarray); |
| 162 | + a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] |
| 163 | + + a[idx - ROW_SIZE(my_subarray)] |
| 164 | + + a[idx + ROW_SIZE(my_subarray)]); |
| 165 | + idx = XY_2_IDX(column, my_subarray.y_size - 1, my_subarray); |
| 166 | + a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] |
| 167 | + + a[idx - ROW_SIZE(my_subarray)] |
| 168 | + + a[idx + ROW_SIZE(my_subarray)]); |
| 169 | + } |
| 170 | + |
| 171 | + /* Perform 1D halo-exchange with neighbours */ |
| 172 | + if (my_subarray.rank != 0) { |
| 173 | + int idx = XY_2_IDX(my_x_lb, 0, my_subarray); |
| 174 | + MPI_Put_notify(&a_out[idx], col_per_wg, MPI_DOUBLE, |
| 175 | + my_subarray.rank - 1, my_subarray.l_nbh_offt+my_x_lb, |
| 176 | + col_per_wg, MPI_DOUBLE, 0, cwin); |
| 177 | + c_expected+=work_group_size; |
| 178 | + } |
| 179 | + |
| 180 | + if (my_subarray.rank != (my_subarray.comm_size - 1)) { |
| 181 | + int idx = XY_2_IDX(my_x_lb, my_subarray.y_size - 1, my_subarray); |
| 182 | + MPI_Put_notify(&a_out[idx], col_per_wg, MPI_DOUBLE, |
| 183 | + my_subarray.rank + 1, 1+my_x_lb, |
| 184 | + col_per_wg, MPI_DOUBLE, 0, cwin); |
| 185 | + c_expected+=work_group_size; |
| 186 | + } |
| 187 | + |
| 188 | + /* Recalculate internal points in parallel with comunications */ |
| 189 | + for (int row = 1; row < my_subarray.y_size - 1; ++row) { |
| 190 | + for (int column = my_x_lb; column < my_x_ub; column ++) { |
| 191 | + int idx = XY_2_IDX(column, row, my_subarray); |
| 192 | + a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] |
| 193 | + + a[idx - ROW_SIZE(my_subarray)] |
| 194 | + + a[idx + ROW_SIZE(my_subarray)]); |
| 195 | + } |
| 196 | + } |
| 197 | + |
| 198 | + item.barrier(sycl::access::fence_space::global_space); |
| 199 | + if (local_id == 0){ |
| 200 | + MPI_Count c; |
| 201 | + while (c < c_expected) MPI_Win_notify_get_value(cwin, 0, &c); |
| 202 | + MPI_Win_notify_set_value(cwin, 0, 0); |
| 203 | + } |
| 204 | + item.barrier(sycl::access::fence_space::global_space); |
| 205 | + } |
| 206 | + }); |
| 207 | + }).wait(); |
| 208 | + |
| 209 | + /* Calculate and report norm value after given number of iterations */ |
| 210 | + if ((NormIteration > 0) && ((NormIteration - 1) == i % NormIteration)) { |
| 211 | + double rank_norm = 0.0; |
| 212 | + |
| 213 | + { |
| 214 | + sycl::buffer<double> norm_buf(&rank_norm, 1); |
| 215 | + q.submit([&](auto & h) { |
| 216 | + auto sumr = sycl::reduction(norm_buf, h, sycl::plus<>()); |
| 217 | + h.parallel_for(sycl::range(my_subarray.x_size, my_subarray.y_size), sumr, [=] (auto index, auto &v) { |
| 218 | + int idx = XY_2_IDX(index[0], index[1], my_subarray); |
| 219 | + double diff = a_out[idx] - a[idx]; |
| 220 | + v += (diff * diff); |
| 221 | + }); |
| 222 | + }).wait(); |
| 223 | + } |
| 224 | + |
| 225 | + /* Get global norm value */ |
| 226 | + MPI_Reduce(&rank_norm, &norm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); |
| 227 | + if (my_subarray.rank == 0) { |
| 228 | + printf("NORM value on iteration %d: %f\n", i+1, sqrt(norm)); |
| 229 | + } |
| 230 | + } |
| 231 | + } |
| 232 | + |
| 233 | + if (PrintTime) { |
| 234 | + double avg_time; |
| 235 | + double rank_time; |
| 236 | + rank_time = MPI_Wtime() - t_start; |
| 237 | + |
| 238 | + MPI_Reduce(&rank_time, &avg_time, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); |
| 239 | + |
| 240 | + if (my_subarray.rank == 0) { |
| 241 | + avg_time = avg_time/my_subarray.comm_size; |
| 242 | + printf("Average solver time: %f(sec)\n", avg_time); |
| 243 | + } |
| 244 | + } |
| 245 | + |
| 246 | + if (my_subarray.rank == 0) { |
| 247 | + printf("[%d] SUCCESS\n", my_subarray.rank); |
| 248 | + } |
| 249 | + |
| 250 | + MPI_Win_unlock_all(&win[1]); |
| 251 | + MPI_Win_unlock_all(&win[0]); |
| 252 | + |
| 253 | + MPI_Win_free(&win[1]); |
| 254 | + MPI_Win_free(&win[0]); |
| 255 | + MPI_Finalize(); |
| 256 | + |
| 257 | + sycl::free(A_device[0], q); |
| 258 | + sycl::free(A_device[1], q); |
| 259 | + |
| 260 | + return 0; |
| 261 | +} |
0 commit comments