@@ -67,7 +67,7 @@ calc_frobenius_norm(const float* img, sycl::queue& Q,
67
67
sum += img[row * col_stride + col] * img[row * col_stride + col];
68
68
});
69
69
}).wait ();
70
- const float frobenius_norm = sqrtf (temp[0 ]);
70
+ const float frobenius_norm = std::sqrt (temp[0 ]);
71
71
sycl::free (temp, Q);
72
72
return frobenius_norm;
73
73
}
@@ -234,8 +234,8 @@ int main(int argc, char **argv) {
234
234
// - O(log(num_elem)) ~ 2 * log(num_elem)
235
235
// [arbitrary choice; implementation-dependent behavior]
236
236
max_err_threshold +=
237
- 2 .0f * logf (num_elem) * std::numeric_limits <float >:: epsilon ( )
238
- * norm_img1 * norm_img2;
237
+ 2 .0f * std::log ( static_cast <float >(num_elem) )
238
+ * std::numeric_limits< float >:: epsilon () * norm_img1 * norm_img2;
239
239
// Verify results by comparing DFT-based and naive calculations to each other,
240
240
// and fetch optimal shift maximizing correlation (DFT-based calculation).
241
241
float max_err = 0 .0f ;
@@ -272,9 +272,9 @@ int main(int argc, char **argv) {
272
272
const float avg_sig1 = img1[0 ] / num_elem;
273
273
const float avg_sig2 = img2[0 ] / num_elem;
274
274
const float std_dev_sig1 =
275
- sqrt ((norm_img1 * norm_img1 - num_elem * avg_sig1 * avg_sig1) / num_elem);
275
+ std:: sqrt ((norm_img1 * norm_img1 - num_elem * avg_sig1 * avg_sig1) / num_elem);
276
276
const float std_dev_sig2 =
277
- sqrt ((norm_img2 * norm_img2 - num_elem * avg_sig2 * avg_sig2) / num_elem);
277
+ std:: sqrt ((norm_img2 * norm_img2 - num_elem * avg_sig2 * avg_sig2) / num_elem);
278
278
const float normalized_corr =
279
279
(max_corr / num_elem - avg_sig1 * avg_sig2) / (std_dev_sig1 * std_dev_sig2);
280
280
std::cout << " Shift the second signal by translation vector ("
0 commit comments