Skip to content

Commit c0156c9

Browse files
committed
fix typo in paths
1 parent 921f534 commit c0156c9

File tree

1 file changed

+5
-5
lines changed
  • AI-and-Analytics/End-to-end-Workloads/LanguageIdentification

1 file changed

+5
-5
lines changed

AI-and-Analytics/End-to-end-Workloads/LanguageIdentification/README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ export COMMON_VOICE_PATH=/data/commonVoice
100100

101101
3. Install packages needed for MP3 to WAV conversion
102102
```bash
103-
sudo apt-get update && apt-get install ffmpeg libgl1
103+
sudo apt-get update && apt-get install -y ffmpeg libgl1
104104
```
105105

106106
4. Navigate to your working directory, clone the `oneapi-src` repository, and navigate to this code sample.
@@ -120,7 +120,7 @@ This section explains how to train a model for language identification using the
120120

121121
First, change to the `Training` directory.
122122
```
123-
cd /Training
123+
cd ./Training
124124
```
125125

126126
### Option 1: Run in Jupyter Notebook
@@ -149,9 +149,9 @@ If you cannot or do not want to use Jupyter Notebook, use these procedures to ru
149149

150150
1. Acquire copies of the training scripts. (The command retrieves copies of the required VoxLingua107 training scripts from SpeechBrain.)
151151
```
152-
cp speechbrain/recipes/VoxLingua107/lang_id/create_wds_shards.py create_wds_shards.py
153-
cp speechbrain/recipes/VoxLingua107/lang_id/train.py train.py
154-
cp speechbrain/recipes/VoxLingua107/lang_id/hparams/train_ecapa.yaml train_ecapa.yaml
152+
cp ../speechbrain/recipes/VoxLingua107/lang_id/create_wds_shards.py create_wds_shards.py
153+
cp ../speechbrain/recipes/VoxLingua107/lang_id/train.py train.py
154+
cp ../speechbrain/recipes/VoxLingua107/lang_id/hparams/train_ecapa.yaml train_ecapa.yaml
155155
```
156156

157157
2. From the `Training` directory, apply patches to modify these files to work with the CommonVoice dataset.

0 commit comments

Comments
 (0)