1414from keras .models import Sequential , Model
1515from keras .layers import Input , Dense , Conv2D , MaxPooling2D , AveragePooling2D , Conv2DTranspose , \
1616 Dot , Embedding , BatchNormalization , GRU , Activation , PReLU , LeakyReLU , ThresholdedReLU , Maximum , \
17- Add , Average , Multiply , Concatenate , UpSampling2D , Flatten , RepeatVector , Reshape
17+ Add , Average , Multiply , Concatenate , UpSampling2D , Flatten , RepeatVector , Reshape , Dropout
1818from keras .initializers import RandomUniform
1919
2020np .random .seed (0 )
@@ -163,7 +163,7 @@ def test_dense(self):
163163
164164 input = Input (shape = (C ,))
165165 result = Dense (D )(input )
166- keras_model = Model (input = input , output = result )
166+ keras_model = Model (inputs = input , outputs = result )
167167 keras_model .compile (optimizer = 'adagrad' , loss = 'mse' )
168168
169169 coreml_model = coremltools .converters .keras .convert (keras_model )
@@ -174,6 +174,19 @@ def test_dense(self):
174174
175175 self .assertTrue (np .allclose (y_reference , y_produced ))
176176
177+ def test_dense_with_dropout (self ):
178+ N , C , D = 2 , 3 , 2
179+ x = _create_tensor (N , C )
180+
181+ input = Input (shape = (C ,))
182+ hidden = Dense (D , activation = 'relu' )(input )
183+ result = Dropout (0.2 )(hidden )
184+
185+ keras_model = Model (inputs = input , outputs = result )
186+ keras_model .compile (optimizer = 'sgd' , loss = 'mse' )
187+
188+ self ._test_one_to_one_operator_core_keras (keras_model , x )
189+
177190 def test_conv_4d (self ):
178191 N , C , H , W = 1 , 2 , 4 , 3
179192 x = _create_tensor (N , C , H , W )
0 commit comments