Releases: onnx/onnxmltools
v1.7.0
The major update for this release
- Supports ONNX 1.7
- Work with the new xgboost version
- Remove Python 2.x support
Details:
Add the flake8 to be the default code formatter (#401)
Fixes #396, xgboost converter for xgboost >= 1.0.2 (#397)
Support onnx 1.7 in CI build (#398)
fixed the xgboost version (#395)
fix ceiling-mode defaults for pool operators (AvgPool, MaxPool) (#388)
Update documentation, add examples (#385)
Remove support of python 2.7 (#383)
upgrade to 1.7 (#384)
Fix for onnx 1.7 release (#381)
Ping h2o version==3.28.0.3 (#377)
Fix xgboost converter (#373)
xgboost not supporting 1.0 version. (#372)
Known issues:
onnxmltools tf2onnx wrapper can only work with tf2onnx <= 1.5.6.
v1.6.5
v1.6.0
v1.5.1
v1.5.0
onnxmltools version 1.5.0 is now available! This version features ONNX Opset 10 support and code coverage.
How do I use the latest onnxmltools package?
pip install onnxmltools --upgrade
python -c "import onnxmltools"
This package includes converters for LightGBM, CoreML, Spark ML, LibSVM, XGBoost, and wrappers for conversion from scikit-learn and Keras.
Highlights since the last release
1.4 release
v1.4.1 Update __init__.py
v1.4.0 rc1 pre-release.
v1.4.0-rc1 upgrade package version for the release.
v1.3.2
The final release for onnxmltools 1.3
switch to the explicit padding if the input shape is available. (#198) * switch to the explicit padding if the input shape is available. * upgrade the version. * fix for the nchw mode. * output_padding could be None.
1.3.0-rc1
- Multiple opset support: Enables user to generate model based on a specified ONNX opset
- ONNX opset 8: Adds support for ONNX opset 8 in all converters
- ONNX model optimization: Reduces redundant operators like transpose and identity in the converted model
- Convert channel_last to channel_first: Enables converted model to run on WinML even if the original model is channel_last, since the WinML API only supports channel_first models
- onnxruntime as backend test: Uses onnxruntime as the backend to test the converted model; improves code quality and compatibility between converters and the inference engine
- Separate LightGBM from scikit-learn converter: Improves code organization