@@ -1178,20 +1178,25 @@ def test_cast_back_to_back_non_const_mixed_types(self):
1178
1178
"Cast" , 5 )
1179
1179
1180
1180
def test_upsample_all_ones_removed (self ):
1181
- node1 = helper .make_node ("Upsample" , ["X" ], ["Y" ], scales = [1 , 1 , 1 , 1 ], name = "upsample1" )
1181
+ node1 = helper .make_node (
1182
+ "Upsample" ,
1183
+ ["X" ],
1184
+ ["Y" ],
1185
+ scales = [1. , 1. , 1. , 1. ],
1186
+ name = "upsample1" )
1182
1187
1183
1188
graph = helper .make_graph (
1184
1189
[node1 ],
1185
1190
"test_upsample_all_ones" ,
1186
- [helper .make_tensor_value_info ("X" , TensorProto .FLOAT , (32 , 16 ))],
1187
- [helper .make_tensor_value_info ("Y" , TensorProto .FLOAT , (32 , 16 ))],
1191
+ [helper .make_tensor_value_info ("X" , TensorProto .FLOAT , (1 , 32 , 32 , 1 ))],
1192
+ [helper .make_tensor_value_info ("Y" , TensorProto .FLOAT , (1 , 32 , 32 , 1 ))],
1188
1193
)
1189
1194
1190
1195
model_proto = self .make_model (graph , producer_name = "onnx-tests" )
1191
1196
1192
1197
self .run_and_compare (
1193
1198
["Y" ],
1194
- {"X" : np .random .randn (32 , 16 ).astype (np .float32 )},
1199
+ {"X" : np .random .randn (1 , 32 , 32 , 1 ).astype (np .float32 )},
1195
1200
model_proto ,
1196
1201
"Upsample" ,
1197
1202
0 )
0 commit comments