@@ -2932,37 +2932,37 @@ def test_Conv2DBackpropInput_const_valid(self):
2932
2932
def test_Conv2DBackpropInput (self ):
2933
2933
input_sizes_val = np .array ([1 , 10 , 10 , 3 ], dtype = np .int32 )
2934
2934
input_sizes = tf .placeholder (tf .int32 , input_sizes_val .shape , name = _TFINPUT )
2935
- filter_val = np .random .randint (low = 0 , high = 256 , size = [3 , 3 , 3 , 5 ]).astype (np .float32 )
2936
- filter = tf .placeholder (tf .float32 , filter_val .shape , name = _TFINPUT1 )
2935
+ filters_val = np .random .randint (low = 0 , high = 256 , size = [3 , 3 , 3 , 5 ]).astype (np .float32 )
2936
+ filters = tf .placeholder (tf .float32 , filters_val .shape , name = _TFINPUT1 )
2937
2937
out_backprop_val = np .random .randint (low = 0 , high = 256 , size = [1 , 10 , 10 , 5 ]).astype (np .float32 )
2938
2938
out_backprop = tf .placeholder (tf .float32 , out_backprop_val .shape , name = _TFINPUT2 )
2939
- _ = tf .nn .conv2d_backprop_input (input_sizes , filter , out_backprop , strides = [1 , 1 , 1 , 1 ], padding = 'SAME' ,
2939
+ _ = tf .nn .conv2d_backprop_input (input_sizes , filters , out_backprop , strides = [1 , 1 , 1 , 1 ], padding = 'SAME' ,
2940
2940
name = _TFOUTPUT )
2941
- self ._run_test_case ([_OUTPUT ], {_INPUT : input_sizes_val , _INPUT1 : filter_val , _INPUT2 : out_backprop_val })
2941
+ self ._run_test_case ([_OUTPUT ], {_INPUT : input_sizes_val , _INPUT1 : filters_val , _INPUT2 : out_backprop_val })
2942
2942
2943
2943
@check_opset_min_version (10 , "Conv2DBackpropInput" )
2944
2944
def test_Conv2DBackpropInput_strided (self ):
2945
2945
input_sizes_val = np .array ([1 , 10 , 10 , 3 ], dtype = np .int32 )
2946
2946
input_sizes = tf .placeholder (tf .int32 , input_sizes_val .shape , name = _TFINPUT )
2947
- filter_val = np .random .randint (low = 0 , high = 256 , size = [3 , 3 , 3 , 5 ]).astype (np .float32 )
2948
- filter = tf .placeholder (tf .float32 , filter_val .shape , name = _TFINPUT1 )
2947
+ filters_val = np .random .randint (low = 0 , high = 256 , size = [3 , 3 , 3 , 5 ]).astype (np .float32 )
2948
+ filters = tf .placeholder (tf .float32 , filters_val .shape , name = _TFINPUT1 )
2949
2949
out_backprop_val = np .random .randint (low = 0 , high = 256 , size = [1 , 5 , 5 , 5 ]).astype (np .float32 )
2950
2950
out_backprop = tf .placeholder (tf .float32 , out_backprop_val .shape , name = _TFINPUT2 )
2951
- _ = tf .nn .conv2d_backprop_input (input_sizes , filter , out_backprop , strides = [1 , 2 , 2 , 1 ], padding = 'SAME' ,
2951
+ _ = tf .nn .conv2d_backprop_input (input_sizes , filters , out_backprop , strides = [1 , 2 , 2 , 1 ], padding = 'SAME' ,
2952
2952
name = _TFOUTPUT )
2953
- self ._run_test_case ([_OUTPUT ], {_INPUT : input_sizes_val , _INPUT1 : filter_val , _INPUT2 : out_backprop_val })
2953
+ self ._run_test_case ([_OUTPUT ], {_INPUT : input_sizes_val , _INPUT1 : filters_val , _INPUT2 : out_backprop_val })
2954
2954
2955
2955
@check_opset_min_version (10 , "Conv2DBackpropInput" )
2956
2956
def test_Conv2DBackpropInput_valid (self ):
2957
2957
input_sizes_val = np .array ([1 , 12 , 12 , 3 ], dtype = np .int32 )
2958
2958
input_sizes = tf .placeholder (tf .int32 , input_sizes_val .shape , name = _TFINPUT )
2959
- filter_val = np .random .randint (low = 0 , high = 256 , size = [3 , 3 , 3 , 5 ]).astype (np .float32 )
2960
- filter = tf .placeholder (tf .float32 , filter_val .shape , name = _TFINPUT1 )
2959
+ filters_val = np .random .randint (low = 0 , high = 256 , size = [3 , 3 , 3 , 5 ]).astype (np .float32 )
2960
+ filters = tf .placeholder (tf .float32 , filters_val .shape , name = _TFINPUT1 )
2961
2961
out_backprop_val = np .random .randint (low = 0 , high = 256 , size = [1 , 10 , 10 , 5 ]).astype (np .float32 )
2962
2962
out_backprop = tf .placeholder (tf .float32 , out_backprop_val .shape , name = _TFINPUT2 )
2963
- _ = tf .nn .conv2d_backprop_input (input_sizes , filter , out_backprop , strides = [1 , 1 , 1 , 1 ], padding = 'VALID' ,
2963
+ _ = tf .nn .conv2d_backprop_input (input_sizes , filters , out_backprop , strides = [1 , 1 , 1 , 1 ], padding = 'VALID' ,
2964
2964
name = _TFOUTPUT )
2965
- self ._run_test_case ([_OUTPUT ], {_INPUT : input_sizes_val , _INPUT1 : filter_val , _INPUT2 : out_backprop_val })
2965
+ self ._run_test_case ([_OUTPUT ], {_INPUT : input_sizes_val , _INPUT1 : filters_val , _INPUT2 : out_backprop_val })
2966
2966
2967
2967
2968
2968
if __name__ == '__main__' :
0 commit comments