@@ -1544,7 +1544,7 @@ def func(x, y):
1544
1544
return tf .identity (x_ , name = _TFOUTPUT )
1545
1545
self ._run_test_case (func , [_OUTPUT ], {_INPUT : x_val , _INPUT1 : y_val })
1546
1546
1547
- @check_opset_min_version (9 , "OneHot " )
1547
+ @check_opset_min_version (11 , "ScatterND " )
1548
1548
def test_segment_sum_data_vector (self ):
1549
1549
segs_val = np .array ([0 , 0 , 0 , 1 , 2 , 2 , 3 , 3 ], dtype = np .int32 )
1550
1550
data_val = np .array ([5 , 1 , 7 , 2 , 3 , 4 , 1 , 3 ], dtype = np .float32 )
@@ -1553,7 +1553,7 @@ def func(data, segments):
1553
1553
return tf .identity (x_ , name = _TFOUTPUT )
1554
1554
self ._run_test_case (func , [_OUTPUT ], {_INPUT : data_val , _INPUT1 : segs_val })
1555
1555
1556
- @check_opset_min_version (11 , "Pad " )
1556
+ @check_opset_min_version (11 , "ScatterND " )
1557
1557
def test_segment_sum_unknown_rank (self ):
1558
1558
segs_val = np .array ([0 , 0 , 0 , 1 , 2 , 2 , 3 , 3 ], dtype = np .int32 )
1559
1559
data_val = np .arange (8 * 2 * 3 , dtype = np .float32 ).reshape ([8 , 2 , 3 ])
@@ -1568,7 +1568,7 @@ def func(data, segments, data_shape, shape_pad):
1568
1568
self ._run_test_case (func , [_OUTPUT ],
1569
1569
{_INPUT : data_val , _INPUT1 : segs_val , _INPUT2 : data_shape_val , _INPUT3 : shape_pad_val })
1570
1570
1571
- @check_opset_min_version (9 , "OneHot " )
1571
+ @check_opset_min_version (11 , "ScatterND " )
1572
1572
def test_segment_ops_data_tensor (self ):
1573
1573
for tf_op in [tf .math .segment_sum , tf .math .segment_prod , tf .math .segment_min , tf .math .segment_max ]:
1574
1574
segs_val = np .array ([0 , 0 , 0 , 1 , 2 , 2 , 3 , 3 ], dtype = np .int32 )
@@ -1578,7 +1578,7 @@ def func(data, segments):
1578
1578
return tf .identity (x_ , name = _TFOUTPUT )
1579
1579
self ._run_test_case (func , [_OUTPUT ], {_INPUT : data_val , _INPUT1 : segs_val })
1580
1580
1581
- @check_opset_min_version (11 , "Pad " )
1581
+ @check_opset_min_version (11 , "ScatterND " )
1582
1582
@skip_tflite ("unknown rank" )
1583
1583
def test_segment_mean_unknown_rank (self ):
1584
1584
segs_val = np .array ([0 , 0 , 0 , 1 , 2 , 2 , 3 , 3 ], dtype = np .int32 )
@@ -1594,7 +1594,7 @@ def func(data, segments, data_shape, shape_pad):
1594
1594
self ._run_test_case (func , [_OUTPUT ],
1595
1595
{_INPUT : data_val , _INPUT1 : segs_val , _INPUT2 : data_shape_val , _INPUT3 : shape_pad_val })
1596
1596
1597
- @check_opset_min_version (9 , "OneHot " )
1597
+ @check_opset_min_version (11 , "ScatterND " )
1598
1598
def test_sparse_segment_sum (self ):
1599
1599
data_val = np .arange (8 * 2 * 3 , dtype = np .float32 ).reshape ([8 , 2 , 3 ])
1600
1600
indices_val = np .array ([2 , 0 , 1 , 3 , 5 , 4 , 3 , 5 , 5 ], dtype = np .int32 )
@@ -1604,7 +1604,7 @@ def func(data, indices, segments):
1604
1604
return tf .identity (x_ , name = _TFOUTPUT )
1605
1605
self ._run_test_case (func , [_OUTPUT ], {_INPUT : data_val , _INPUT1 : indices_val , _INPUT2 : segs_val })
1606
1606
1607
- @check_opset_min_version (9 , "OneHot " )
1607
+ @check_opset_min_version (11 , "ScatterND " )
1608
1608
def test_sparse_segment_mean (self ):
1609
1609
data_val = np .arange (8 * 2 * 3 , dtype = np .float32 ).reshape ([8 , 2 , 3 ])
1610
1610
indices_val = np .array ([2 , 0 , 1 , 3 , 5 , 4 , 3 , 5 , 5 ], dtype = np .int32 )
@@ -1614,7 +1614,7 @@ def func(data, indices, segments):
1614
1614
return tf .identity (x_ , name = _TFOUTPUT )
1615
1615
self ._run_test_case (func , [_OUTPUT ], {_INPUT : data_val , _INPUT1 : indices_val , _INPUT2 : segs_val })
1616
1616
1617
- @check_opset_min_version (9 , "OneHot " )
1617
+ @check_opset_min_version (11 , "ScatterND " )
1618
1618
def test_sparse_segment_sqrtn (self ):
1619
1619
data_val = np .arange (8 * 2 * 3 , dtype = np .float32 ).reshape ([8 , 2 , 3 ])
1620
1620
indices_val = np .array ([2 , 0 , 1 , 3 , 5 , 4 , 3 , 5 , 5 ], dtype = np .int32 )
@@ -1624,7 +1624,7 @@ def func(data, indices, segments):
1624
1624
return tf .identity (x_ , name = _TFOUTPUT )
1625
1625
self ._run_test_case (func , [_OUTPUT ], {_INPUT : data_val , _INPUT1 : indices_val , _INPUT2 : segs_val })
1626
1626
1627
- @check_opset_min_version (9 , "OneHot " )
1627
+ @check_opset_min_version (11 , "ScatterND " )
1628
1628
def test_sparse_segment_ops_with_num_segments (self ):
1629
1629
for tf_op in [tf .sparse .segment_sum , tf .sparse .segment_mean , tf .sparse .segment_sqrt_n ]:
1630
1630
data_val = np .arange (8 * 2 * 3 , dtype = np .float32 ).reshape ([8 , 2 , 3 ])
@@ -1635,7 +1635,7 @@ def func(data, indices, segments):
1635
1635
return tf .identity (x_ , name = _TFOUTPUT )
1636
1636
self ._run_test_case (func , [_OUTPUT ], {_INPUT : data_val , _INPUT1 : indices_val , _INPUT2 : segs_val })
1637
1637
1638
- @check_opset_min_version (9 , "OneHot " )
1638
+ @check_opset_min_version (11 , "ScatterND " )
1639
1639
@check_tf_min_version ("2.3" , "needs tf 2.3" )
1640
1640
def test_unsorted_segment_ops (self ):
1641
1641
tf_ops = [
@@ -1654,7 +1654,7 @@ def func(data, segments):
1654
1654
return tf .identity (x_ , name = _TFOUTPUT )
1655
1655
self ._run_test_case (func , [_OUTPUT ], {_INPUT : data_val , _INPUT1 : segs_val })
1656
1656
1657
- @check_opset_min_version (9 , "OneHot " )
1657
+ @check_opset_min_version (11 , "ScatterND " )
1658
1658
@check_tf_min_version ("2.3" , "num_segments can be int64 in tf 2.3" )
1659
1659
def test_segment_op_types (self ):
1660
1660
data_dtypes = [np .int32 , np .float32 ]
0 commit comments