|
27 | 27 | # pylint: disable=unused-argument,missing-docstring,unused-variable,pointless-string-statement,invalid-name
|
28 | 28 |
|
29 | 29 |
|
30 |
| -@tf_op("FakeQuantWithMinMaxVars") |
31 |
| -class FakeQuantWithMinMaxVars: |
| 30 | +@tf_op("FakeQuantWithMinMaxArgs") |
| 31 | +class FakeQuantWithMinMaxArgs: |
| 32 | + # see https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/fake-quant-with-min-max-args |
32 | 33 | @classmethod
|
33 | 34 | def version_11(cls, ctx, node, **kwargs):
|
34 | 35 | # hack to make up for the missing onnx pack op
|
35 |
| - import pprint |
36 |
| - pprint.pprint(node) |
37 |
| - amin = node.get_attr("min").i |
38 |
| - if axis < 0: |
39 |
| - axis += len(ctx.get_shape(node.input[0])) + 1 |
40 |
| - |
41 |
| - inputs = [] |
42 |
| - dtype = None |
43 |
| - # insert Unsqueeze on each input |
44 |
| - for i, n in enumerate(node.inputs): |
45 |
| - dtype = ctx.get_dtype(node.input[i]) |
46 |
| - shape = ctx.get_shape(node.input[i]) |
47 |
| - new_node = ctx.make_node("Unsqueeze", [node.input[i]], op_name_scope=node.name, attr={"axes": [axis]}, |
48 |
| - shapes=[shape], dtypes=[dtype]) |
49 |
| - output_name = new_node.output[0] |
50 |
| - node.input[i] = output_name |
51 |
| - inputs.append(output_name) |
52 |
| - |
53 |
| - shapes = node.output_shapes |
54 |
| - dtypes = node.output_dtypes |
| 36 | + amin = node.get_attr("min").f |
| 37 | + amax = node.get_attr("max").f |
| 38 | + narrow_range = node.get_attr("narrow_range").i |
| 39 | + num_bits = node.get_attr("num_bits").i |
| 40 | + |
| 41 | + if narrow_range: |
| 42 | + raise RuntimeError( |
| 43 | + "Unable to convert node FakeQuantWithMinMaxArgs with " |
| 44 | + "narrow_range=%r" % narrow_range) |
| 45 | + |
| 46 | + if 0 < amin < amax: |
| 47 | + min_adj = 0 |
| 48 | + max_adj = amax - amin |
| 49 | + scale = 1. |
| 50 | + elif amin < amax < 0: |
| 51 | + min_adj = amin - amax |
| 52 | + max_adj = 0 |
| 53 | + scale = 1. |
| 54 | + elif amin <= 0 <= amax: |
| 55 | + scale = (amax - amin) / (2 ** num_bits - 1) |
| 56 | + min_adj = scale * int(amin / scale) |
| 57 | + max_adj = amax + min_adj - amin |
| 58 | + else: |
| 59 | + raise RuntimeError( |
| 60 | + "Unable to convert node FakeQuantWithMinMaxArgs with " |
| 61 | + "min=%f and max=%f" % (amin, amax)) |
| 62 | + |
| 63 | + dtype = ctx.get_dtype(node.input[0]) |
| 64 | + shape = ctx.get_shape(node.input[0]) |
| 65 | + |
| 66 | + new_node = ctx.make_node( |
| 67 | + "QuantizeLinear", [node.input[0], pb_scale, y_zero_point], |
| 68 | + op_name_scope=node.name, attr={"axes": [axis]}, |
| 69 | + shapes=[shape], dtypes=[idtype]) |
| 70 | + output_name = new_node.output[0] |
| 71 | + node.input[i] = output_name |
| 72 | + |
55 | 73 | ctx.remove_node(node.name)
|
56 |
| - # concat all unqueezes |
57 |
| - concat = ctx.make_node("Concat", inputs, op_name_scope=node.name, attr={"axis": axis}, |
58 |
| - shapes=shapes, dtypes=dtypes) |
59 |
| - ctx.replace_all_inputs(ctx.get_nodes(), node.output[0], concat.output[0]) |
| 74 | + |
| 75 | + last_node = ctx.make_node( |
| 76 | + "DequantizeLinear", [new_node.output[0], x_scale, x_zero_point], |
| 77 | + op_name_scope=node.name, attr={"axis": axis}, |
| 78 | + shapes=[shape], dtypes=[dtype]) |
| 79 | + ctx.replace_all_inputs(ctx.get_nodes(), node.output[0], last_node.output[0]) |
60 | 80 |
|
61 | 81 |
|
0 commit comments