@@ -800,9 +800,9 @@ def test_relu(self):
800
800
@skip_caffe2_backend ("fails on caffe2 with dim issue" )
801
801
@check_onnxruntime_incompatibility ("Mul" )
802
802
@check_tf_min_version ("1.6" )
803
- def test_leaky_relu (self ):
803
+ def test_leaky_relu_int (self ):
804
804
# starting from tf 1.6, leaky_relu supports `feature` x of int type
805
- x_types = [np .float32 , np . int32 , np .int64 ]
805
+ x_types = [np .int32 , np .int64 ]
806
806
for x_type in x_types :
807
807
x_val = 1000 * np .random .random_sample ([1000 , 100 ]).astype (x_type )
808
808
for alpha in [0.1 , - 0.1 , 1.0 , - 1.0 ]:
@@ -814,9 +814,7 @@ def test_leaky_relu(self):
814
814
815
815
@skip_caffe2_backend ("fails on caffe2 with dim issue" )
816
816
@check_onnxruntime_incompatibility ("Mul" )
817
- @check_tf_max_version ("1.5" )
818
- def test_leaky_relu_old (self ):
819
- # for tf_version <= 1.5, leaky_relu requires `feature` x to be of type `float32`
817
+ def test_leaky_relu_float (self ):
820
818
x_val = 1000 * np .random .random_sample ([1000 , 100 ]).astype (np .float32 )
821
819
for alpha in [0.1 , - 0.1 , 1.0 , - 1.0 ]:
822
820
x = tf .placeholder (x_val .dtype , [None ] * x_val .ndim , name = _TFINPUT )
0 commit comments