|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Converting a Huggingface model to ONNX with tf2onnx\n", |
| 8 | + "\n", |
| 9 | + "This is a simple example how to convert a [huggingface](https://huggingface.co/) model to ONNX using [tf2onnx](https://github.com/onnx/tensorflow-onnx).\n", |
| 10 | + "\n", |
| 11 | + "We use the [TFBertForQuestionAnswering](https://huggingface.co/transformers/model_doc/bert.html#tfbertforquestionanswering) example from huggingface.\n", |
| 12 | + "\n", |
| 13 | + "Other models will work similar. You'll find additional examples for other models in our unit tests [here](https://github.com/onnx/tensorflow-onnx/blob/master/tests/huggingface.py)." |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "## Install dependencies" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": null, |
| 26 | + "metadata": {}, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "!pip install tensorflow transformers tf2onnx onnxruntime" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "## The keras code" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 1, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "import os\n", |
| 46 | + "os.environ['CUDA_VISIBLE_DEVICES'] = \"\"\n", |
| 47 | + "\n", |
| 48 | + "import warnings\n", |
| 49 | + "warnings.filterwarnings('ignore')\n", |
| 50 | + "\n", |
| 51 | + "import numpy as np\n", |
| 52 | + "import onnxruntime as rt\n", |
| 53 | + "import tensorflow as tf\n", |
| 54 | + "import tf2onnx" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 2, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [ |
| 62 | + { |
| 63 | + "name": "stderr", |
| 64 | + "output_type": "stream", |
| 65 | + "text": [] |
| 66 | + }, |
| 67 | + { |
| 68 | + "data": { |
| 69 | + "text/plain": [ |
| 70 | + "TFQuestionAnsweringModelOutput(loss=None, start_logits=<tf.Tensor: shape=(1, 16), dtype=float32, numpy=\n", |
| 71 | + "array([[ 0.27443457, 0.02250022, -0.32903647, -0.32448006, -0.26440915,\n", |
| 72 | + " -0.03356116, -0.11466929, -0.12272861, -0.23254037, -0.21369037,\n", |
| 73 | + " 0.02170385, -0.38734213, -0.14865303, -0.04804918, 0.02706608,\n", |
| 74 | + " -0.12273058]], dtype=float32)>, end_logits=<tf.Tensor: shape=(1, 16), dtype=float32, numpy=\n", |
| 75 | + "array([[-0.23549399, 0.11830041, -0.16875415, 0.04315909, 0.00721513,\n", |
| 76 | + " 0.20957005, 0.00850991, -0.49158442, 0.10791501, 0.07153591,\n", |
| 77 | + " 0.26274043, -0.15160318, -0.01847767, 0.03389414, 0.25666913,\n", |
| 78 | + " -0.49158433]], dtype=float32)>, hidden_states=None, attentions=None)" |
| 79 | + ] |
| 80 | + }, |
| 81 | + "execution_count": 2, |
| 82 | + "metadata": {}, |
| 83 | + "output_type": "execute_result" |
| 84 | + } |
| 85 | + ], |
| 86 | + "source": [ |
| 87 | + "from transformers import BertTokenizer, TFBertForQuestionAnswering\n", |
| 88 | + "tokenizer = BertTokenizer.from_pretrained('bert-base-cased')\n", |
| 89 | + "model = TFBertForQuestionAnswering.from_pretrained('bert-base-cased')\n", |
| 90 | + "question, text = \"Who was Jim Henson?\", \"Jim Henson was a nice puppet\"\n", |
| 91 | + "input_dict = tokenizer(question, text, return_tensors='tf')\n", |
| 92 | + "tf_results = model(input_dict)\n", |
| 93 | + "tf_results" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "## Convert to ONNX" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "code", |
| 105 | + "execution_count": 3, |
| 106 | + "metadata": {}, |
| 107 | + "outputs": [ |
| 108 | + { |
| 109 | + "name": "stderr", |
| 110 | + "output_type": "stream", |
| 111 | + "text": [] |
| 112 | + } |
| 113 | + ], |
| 114 | + "source": [ |
| 115 | + "# describe the inputs\n", |
| 116 | + "input_spec = (\n", |
| 117 | + " tf.TensorSpec((None, None), tf.int32, name=\"input_ids\"),\n", |
| 118 | + " tf.TensorSpec((None, None), tf.int32, name=\"token_type_ids\"),\n", |
| 119 | + " tf.TensorSpec((None, None), tf.int32, name=\"attention_mask\")\n", |
| 120 | + ")\n", |
| 121 | + "\n", |
| 122 | + "# and convert\n", |
| 123 | + "_, _ = tf2onnx.convert.from_keras(model, input_signature=input_spec, opset=13, output_path=\"bert.onnx\")" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "markdown", |
| 128 | + "metadata": {}, |
| 129 | + "source": [ |
| 130 | + "## Test the ONNX model with onnxruntime" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 4, |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [ |
| 138 | + { |
| 139 | + "data": { |
| 140 | + "text/plain": [ |
| 141 | + "[array([[ 0.27443478, 0.02250013, -0.32903633, -0.32448038, -0.26440892,\n", |
| 142 | + " -0.03356095, -0.11466938, -0.12272887, -0.2325401 , -0.21369015,\n", |
| 143 | + " 0.02170385, -0.3873423 , -0.148653 , -0.04804894, 0.02706566,\n", |
| 144 | + " -0.1227307 ]], dtype=float32),\n", |
| 145 | + " array([[-0.23549382, 0.11830062, -0.16875397, 0.0431588 , 0.00721494,\n", |
| 146 | + " 0.2095699 , 0.00850987, -0.49158436, 0.10791501, 0.07153573,\n", |
| 147 | + " 0.26274025, -0.15160298, -0.01847767, 0.03389416, 0.25666922,\n", |
| 148 | + " -0.49158415]], dtype=float32)]" |
| 149 | + ] |
| 150 | + }, |
| 151 | + "execution_count": 4, |
| 152 | + "metadata": {}, |
| 153 | + "output_type": "execute_result" |
| 154 | + } |
| 155 | + ], |
| 156 | + "source": [ |
| 157 | + "# get the names we want as output\n", |
| 158 | + "output_names = list(tf_results.keys())\n", |
| 159 | + "\n", |
| 160 | + "# switch the input_dict to numpy\n", |
| 161 | + "input_dict_np = {k: v.numpy() for k, v in input_dict.items()}\n", |
| 162 | + "\n", |
| 163 | + "opt = rt.SessionOptions()\n", |
| 164 | + "sess = rt.InferenceSession(\"bert.onnx\")\n", |
| 165 | + "onnx_results = sess.run(output_names, input_dict_np)\n", |
| 166 | + "onnx_results" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "markdown", |
| 171 | + "metadata": {}, |
| 172 | + "source": [ |
| 173 | + "## Make sure tensorflow and onnxruntime results are the same" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": 5, |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [], |
| 181 | + "source": [ |
| 182 | + "for i, name in enumerate(output_names):\n", |
| 183 | + " np.testing.assert_allclose(tf_results[name], onnx_results[i], rtol=1e-5, atol=1e-5)" |
| 184 | + ] |
| 185 | + } |
| 186 | + ], |
| 187 | + "metadata": { |
| 188 | + "kernelspec": { |
| 189 | + "display_name": "Python [conda env:root] *", |
| 190 | + "language": "python", |
| 191 | + "name": "conda-root-py" |
| 192 | + }, |
| 193 | + "language_info": { |
| 194 | + "codemirror_mode": { |
| 195 | + "name": "ipython", |
| 196 | + "version": 3 |
| 197 | + }, |
| 198 | + "file_extension": ".py", |
| 199 | + "mimetype": "text/x-python", |
| 200 | + "name": "python", |
| 201 | + "nbconvert_exporter": "python", |
| 202 | + "pygments_lexer": "ipython3", |
| 203 | + "version": "3.7.3" |
| 204 | + } |
| 205 | + }, |
| 206 | + "nbformat": 4, |
| 207 | + "nbformat_minor": 2 |
| 208 | +} |
0 commit comments