@@ -86,8 +86,8 @@ def create_onnx_random_uniform_op(g, tmax, tmin, ru_op, output, to_delete):
86
86
# In many cases there is a shape op in tensorflow before RandomUniform and
87
87
# to make that work for onnx we just need to remove the shape op.
88
88
new_node = g .make_node ("RandomUniformLike" , inputs = [shape_node .input [0 ]], name = op_name ,
89
- attr = {"low" : tmin , "high" : tmax , "dtype" : dtype },
90
- shapes = shape , dtypes = [dtype ])
89
+ attr = {"low" : tmin , "high" : tmax , "dtype" : dtype },
90
+ shapes = shape , dtypes = [dtype ])
91
91
else :
92
92
# if the shape is calculated we need to create a tensor so RandomUniformLike
93
93
# can take the shape from there. Pre opset9 this is somewhat hacky because there is
@@ -104,6 +104,6 @@ def create_onnx_random_uniform_op(g, tmax, tmin, ru_op, output, to_delete):
104
104
func (g , fill_node )
105
105
# and use RandomUniformLike to create the random tensor
106
106
new_node = g .make_node ("RandomUniformLike" , inputs = [fill_node .output [0 ]], name = op_name ,
107
- attr = {"low" : tmin , "high" : tmax , "dtype" : dtype },
108
- shapes = shape , dtypes = [dtype ])
107
+ attr = {"low" : tmin , "high" : tmax , "dtype" : dtype },
108
+ shapes = shape , dtypes = [dtype ])
109
109
return new_node
0 commit comments