@@ -292,8 +292,8 @@ import tf2onnx
292
292
model_proto, external_tensor_storage = tf2onnx.convert.from_keras(model,
293
293
input_signature=None, opset=None, custom_ops=None,
294
294
custom_op_handlers=None, custom_rewriter=None,
295
- inputs_as_nchw=None, extra_opset =None shape_override =None,
296
- target=None, large_model=False, output_path=None)
295
+ inputs_as_nchw=None, outputs_as_nchw =None, extra_opset =None,
296
+ shape_override=None, target=None, large_model=False, output_path=None)
297
297
298
298
Args:
299
299
model: the tf.keras model we want to convert
@@ -307,7 +307,8 @@ model_proto, external_tensor_storage = tf2onnx.convert.from_keras(model,
307
307
custom_rewriter: list of custom graph rewriters
308
308
extra_opset: list of extra opset's, for example the opset's used by custom ops
309
309
shape_override: dict with inputs that override the shapes given by tensorflow
310
- inputs_as_nchw: transpose inputs in list from nchw to nhwc
310
+ inputs_as_nchw: transpose inputs in list from nhwc to nchw
311
+ outputs_as_nchw: transpose outputs in list from nhwc to nchw
311
312
large_model: use the ONNX external tensor storage format
312
313
output_path: save model to output_path
313
314
@@ -323,8 +324,8 @@ import tf2onnx
323
324
324
325
model_proto, external_tensor_storage = tf2onnx.convert.from_function(function,
325
326
input_signature=None, opset=None, custom_ops=None,
326
- custom_op_handlers=None, custom_rewriter=None,
327
- inputs_as_nchw =None, extra_opset=None, shape_override=None,
327
+ custom_op_handlers=None, custom_rewriter=None, inputs_as_nchw=None,
328
+ outputs_as_nchw =None, extra_opset=None, shape_override=None,
328
329
target=None, large_model=False, output_path=None)
329
330
330
331
Args:
@@ -339,7 +340,8 @@ model_proto, external_tensor_storage = tf2onnx.convert.from_function(function,
339
340
custom_rewriter: list of custom graph rewriters
340
341
extra_opset: list of extra opset's, for example the opset's used by custom ops
341
342
shape_override: dict with inputs that override the shapes given by tensorflow
342
- inputs_as_nchw: transpose inputs in list from nchw to nhwc
343
+ inputs_as_nchw: transpose inputs in list from nhwc to nchw
344
+ outputs_as_nchw: transpose outputs in list from nhwc to nchw
343
345
large_model: use the ONNX external tensor storage format
344
346
output_path: save model to output_path
345
347
@@ -354,7 +356,7 @@ import tf2onnx
354
356
model_proto, external_tensor_storage = tf2onnx.convert.from_graph_def(graph_def,
355
357
name=None, input_names=None, output_names=None, opset=None,
356
358
custom_ops=None, custom_op_handlers=None, custom_rewriter=None,
357
- inputs_as_nchw=None, extra_opset=None,
359
+ inputs_as_nchw=None, outputs_as_nchw=None, extra_opset=None,
358
360
shape_override=None, target=None, large_model=False,
359
361
output_path=None)
360
362
@@ -369,7 +371,8 @@ model_proto, external_tensor_storage = tf2onnx.convert.from_graph_def(graph_def,
369
371
custom_rewriter: list of custom graph rewriters
370
372
extra_opset: list of extra opset's, for example the opset's used by custom ops
371
373
shape_override: dict with inputs that override the shapes given by tensorflow
372
- inputs_as_nchw: transpose inputs in list from nchw to nhwc
374
+ inputs_as_nchw: transpose inputs in list from nhwc to nchw
375
+ outputs_as_nchw: transpose outputs in list from nhwc to nchw
373
376
large_model: use the ONNX external tensor storage format
374
377
output_path: save model to output_path
375
378
@@ -383,8 +386,8 @@ import tf2onnx
383
386
384
387
model_proto, external_tensor_storage = tf2onnx.convert.from_tflite(tflite_path,
385
388
input_names=None, output_names=None, opset=None, custom_ops=None, custom_op_handlers=None,
386
- custom_rewriter=None, inputs_as_nchw=None, extra_opset =None, shape_override=None, target =None,
387
- large_model=False, output_path=None):
389
+ custom_rewriter=None, inputs_as_nchw=None, outputs_as_nchw =None, extra_opset =None,
390
+ shape_override=None, target=None, large_model=False, output_path=None):
388
391
389
392
Args:
390
393
tflite_path: the tflite model file full path
@@ -396,7 +399,8 @@ model_proto, external_tensor_storage = tf2onnx.convert.from_tflite(tflite_path,
396
399
runtime can still open the model. Type is a dictionary `{op name: domain}`.
397
400
custom_op_handlers: dictionary of custom ops handlers
398
401
custom_rewriter: list of custom graph rewriters
399
- inputs_as_nchw: transpose inputs in list from nchw to nhwc
402
+ inputs_as_nchw: transpose inputs in list from nhwc to nchw
403
+ outputs_as_nchw: transpose outputs in list from nhwc to nchw
400
404
extra_opset: list of extra opset's, for example the opset's used by custom ops
401
405
shape_override: dict with inputs that override the shapes given by tensorflow
402
406
target: list of workarounds applied to help certain platforms
0 commit comments