|
| 1 | +# Copyright (c) Microsoft Corporation. All rights reserved. |
| 2 | +# Licensed under the MIT license. |
| 3 | + |
| 4 | +"""Unit Tests for custom rnns.""" |
| 5 | + |
| 6 | +from __future__ import absolute_import |
| 7 | +from __future__ import division |
| 8 | +from __future__ import print_function |
| 9 | +import os |
| 10 | +import numpy as np |
| 11 | +import tensorflow as tf |
| 12 | + |
| 13 | +from tensorflow.python.ops import init_ops, random_ops, init_ops |
| 14 | +from tensorflow.python.ops.array_ops import FakeQuantWithMinMaxVars |
| 15 | +from backend_test_base import Tf2OnnxBackendTestBase |
| 16 | +from common import unittest_main, check_gru_count, check_opset_after_tf_version, skip_tf2 |
| 17 | +from tf2onnx.tf_loader import is_tf2 |
| 18 | +from tensorflow_model_optimization.python.core.quantization.keras import quantize |
| 19 | + |
| 20 | +# pylint: disable=missing-docstring,invalid-name,unused-argument,using-constant-test |
| 21 | +# pylint: disable=abstract-method,arguments-differ |
| 22 | + |
| 23 | +if is_tf2(): |
| 24 | + fake_quant_with_min_max_vars_gradient = tf.compat.v1.quantization.fake_quant_with_min_max_vars_gradient |
| 25 | + dynamic_rnn = tf.compat.v1.nn.dynamic_rnn |
| 26 | +else: |
| 27 | + fake_quant_with_min_max_vars_gradient = tf.quantization.fake_quant_with_min_max_vars_gradient |
| 28 | + dynamic_rnn = tf.nn.dynamic_rnn |
| 29 | + |
| 30 | + |
| 31 | +def quantize_model_save(keras_file, tflite_file): |
| 32 | + with quantize.quantize_scope(): |
| 33 | + model = tf.keras.models.load_model(keras_file) |
| 34 | + converter = tf.lite.TFLiteConverter.from_keras_model(model) |
| 35 | + |
| 36 | + converter.representative_dataset = calibration_gen |
| 37 | + converter._experimental_new_quantizer = True # pylint: disable=protected-access |
| 38 | + converter.target_spec.supported_ops = [ |
| 39 | + tf.lite.OpsSet.TFLITE_BUILTINS_INT8 |
| 40 | + ] # to enable post-training quantization with the representative dataset |
| 41 | + |
| 42 | + tflite_model = converter.convert() |
| 43 | + tflite_file = 'quantized_mnist.tflite' |
| 44 | + open(tflite_file, 'wb').write(tflite_model) |
| 45 | + |
| 46 | + |
| 47 | +class QuantizationTests(Tf2OnnxBackendTestBase): |
| 48 | + |
| 49 | + def common_quantize(self, name): |
| 50 | + dest = os.path.splitext(os.path.split(name)[-1])[0] + '.tflite' |
| 51 | + quantize_model_save(name, dest) |
| 52 | + |
| 53 | + |
| 54 | + def test_fake_quant_with_min_max_vars_gradient(self): |
| 55 | + cwd = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models') |
| 56 | + name = os.path.join(cwd, "gru", "frozen.pb") |
| 57 | + self.common_quantize(name) |
| 58 | + |
| 59 | + |
| 60 | +if __name__ == '__main__': |
| 61 | + unittest_main() |
0 commit comments