@@ -3258,6 +3258,30 @@ def func(x):
3258
3258
#self._run_test_case([_OUTPUT, _OUTPUT1], {_INPUT: x_val})
3259
3259
self ._run_test_case (func , [_OUTPUT ], {_INPUT : x_val })
3260
3260
3261
+ @check_opset_min_version (9 , "Compress" )
3262
+ def test_dynamic_partition_both_vector (self ):
3263
+ data_val = np .array ([1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ], dtype = np .float32 )
3264
+ part_val = np .array ([0 , 0 , 1 , 1 , 0 , 2 , 1 , 0 ], dtype = np .int32 )
3265
+ def func (data , partitions ):
3266
+ p1 , p2 , p3 = tf .dynamic_partition (data , partitions , num_partitions = 3 )
3267
+ p1_ = tf .identity (p1 , name = _TFOUTPUT )
3268
+ p2_ = tf .identity (p2 , name = _TFOUTPUT1 )
3269
+ p3_ = tf .identity (p3 , name = _TFOUTPUT2 )
3270
+ return p1_ , p2_ , p3_
3271
+ self ._run_test_case (func , [_OUTPUT , _OUTPUT1 , _OUTPUT2 ], {_INPUT : data_val , _INPUT1 : part_val })
3272
+
3273
+ @check_opset_min_version (9 , "Compress" )
3274
+ def test_dynamic_partition_data_tensor (self ):
3275
+ data_val = np .array ([[1 , 2 ], [3 , 4 ], [5 , 6 ], [7 , 8 ], [9 , 10 ]], dtype = np .float32 )
3276
+ part_val = np .array ([0 , 2 , 1 , 0 , 1 ], dtype = np .int32 )
3277
+ def func (data , partitions ):
3278
+ p1 , p2 , p3 = tf .dynamic_partition (data , partitions , num_partitions = 3 )
3279
+ p1_ = tf .identity (p1 , name = _TFOUTPUT )
3280
+ p2_ = tf .identity (p2 , name = _TFOUTPUT1 )
3281
+ p3_ = tf .identity (p3 , name = _TFOUTPUT2 )
3282
+ return p1_ , p2_ , p3_
3283
+ self ._run_test_case (func , [_OUTPUT , _OUTPUT1 , _OUTPUT2 ], {_INPUT : data_val , _INPUT1 : part_val })
3284
+
3261
3285
@check_opset_min_version (10 , "Conv2DBackpropInput" )
3262
3286
def test_Conv2DBackpropInput_const (self ):
3263
3287
input_sizes_val_ = np .array ([1 , 10 , 10 , 3 ], dtype = np .int32 )
0 commit comments