How to use config.yaml to train the model in 1.1.1v ? #2588
Unanswered
vanishingkazen
asked this question in
Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
cli : anomalib train --config config/config.yaml
the command throw error : error: Validation failed: Subcommand 'train' does not accept nested key 'metrics.threshold.init_args.default_value'
How should I modify my config file to correctly run the command?
this is content of my config.yaml :
model:
class_path: anomalib.models.Cfa
init_args:
backbone: wide_resnet50_2
gamma_c: 1
gamma_d: 1
num_nearest_neighbors: 3
num_hard_negative_features: 3
radius: 1.0e-05
trainer:
max_epochs: 30
callbacks:
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
patience: 5
monitor: pixel_AUROC
mode: max
data:
class_path: anomalib.data.Folder
init_args:
name: LCC-FASD
root: "/data/user001/nvidia/datasets/LCC-FASD"
normal_dir: "normal"
abnormal_dir: "abnormal/"
normal_test_dir: "test"
mask_dir: null
normal_split_ratio: 0
extensions: [".png"]
train_batch_size: 128
eval_batch_size: 32
num_workers: 8
test_split_mode: from_dir
test_split_ratio: 0.2
val_split_mode: same_as_test
val_split_ratio: 0.5
seed: null
metrics:
image:
- F1Score
- AUROC
pixel:
- F1Score
- AUROC
threshold:
class_path: anomalib.metrics.F1AdaptiveThreshold
init_args:
default_value: 0.5
Beta Was this translation helpful? Give feedback.
All reactions