Skip to content

❓ <title>Can you please tell me the specific training parameters that are officially used to train the MVTecAD dataset using patchcore? #3200

@FreemanTang

Description

@FreemanTang

Your Question

Can you please tell me the specific training parameters that are officially used to train the MVTecAD dataset using patchcore?

The results I get when I use this code to train are way off compared to the official results, Patchcore Results. I would like to know what is the reason for this?

from anomalib.data import MVTecAD
from anomalib.engine import Engine
from anomalib.models import Patchcore

from pathlib import Path
from anomalib.data import Folder

# 1. Basic Usage
# Initialize with default settings
model = Patchcore()

# 2. Custom Configuration
# Configure model parameters
model = Patchcore(
    backbone="wide_resnet50_2",  # Feature extraction backbone
    layers=["layer2", "layer3"],  # Layers to extract features from
    pre_trained=True,  # Use pretrained weights
    num_neighbors=9,  # Number of nearest neighbors
)

# 3. Training Pipeline
datamodule = MVTecAD(
    root="anomalib/datasets/MVTec",
    category="bottle",
    train_batch_size=16,
    eval_batch_size=16,  # Important for feature extraction
    num_workers=0,  # Number of workers for data loading
    seed=42,
)


# Initialize training engine with specific settings
engine = Engine(
    max_epochs=1,  # Patchcore typically needs only one epoch
    accelerator="auto",  # Automatically detect GPU/CPU
    devices=1,  # Number of devices to use
)

# Train the model
# engine.fit(
#     model=model,
#     datamodule=datamodule,
# )

engine.train(
    model=model,
    datamodule=datamodule,
)
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃        Test metric        ┃       DataLoader 0        ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│        image_AUROC        │            1.0            │
│       image_F1Score       │    0.9919999837875366     │
│        pixel_AUROC        │    0.9855615496635437     │
│       pixel_F1Score       │    0.7266571521759033     │
└───────────────────────────┴───────────────────────────┘

Forum Check

  • I have searched the discussions forum for an answer to my question.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions