Skip to content

Commit 1c5666a

Browse files
committed
feat: add initial commit for llm-pipeline-verification use case (#240)
1 parent 7ca6d84 commit 1c5666a

File tree

184 files changed

+1060
-410
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

184 files changed

+1060
-410
lines changed

README.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -20,14 +20,13 @@ Based on the platform you are using, select the following to get started:
2020
2. [Intel® Data Center GPU Flex Series](gpu/flex/ats#intel-data-center-gpu-flex-series-products-formerly-arctic-sound)
2121

2222
## Use Cases
23-
1. [Intel® Distribution of OpenVINO™ Toolkit](usecases/openvino/README.md)
23+
1. [Intel® Distribution of OpenVINO™ Toolkit](usecases/ai/openvino/README.md)
2424
2. [Vector Packet Processing](usecases/netsec/vpp/README.md)
2525
3. [OpenVINO™ Bert Model Benchmarking](usecases/netsec/openvino-bert/README.md)
26-
4. [Ollama with Open WebUI on Intel® Discrete GPU](usecases/llm/ollama/README.md)
27-
5. [LLM Finetuning Benchmark](usecases/llm/finetuning-benchmark/README.md)
28-
6. [LLM RAG Toolkit](usecases/llm/rag-toolkit/README.md)
29-
7. [Gen AI validated systems](usecases/genai/README.md)
30-
9. [AI Video Analytics](usecases/llm/ai-video-analytics/README.md)
26+
4. [Open WebUI with Ollama](usecases/ai/openwebui-ollama/README.md)
27+
5. [LLM Finetuning Benchmark](usecases/ai/finetuning-benchmark/README.md)
28+
6. [LLM RAG Toolkit](usecases/ai/rag-toolkit/README.md)
29+
7. [AI Video Analytics](usecases/ai/ai-video-analytics/README.md)
3130

3231
## Disclaimer
3332
GStreamer* is an open source framework licensed under LGPL. See https://gstreamer.freedesktop.org/documentation/frequently-asked-questions/licensing.html. You are solely responsible for determining if your use of GStreamer requires any additional licenses. Intel is not responsible for obtaining any such licenses, nor liable for any licensing fees due, in connection with your use of GStreamer.
File renamed without changes.
File renamed without changes.
File renamed without changes.
Lines changed: 14 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -4,12 +4,16 @@ A sample application to perform semantic search and face identification with emb
44
## Example
55
![Alt Text](./assets/example.gif)
66

7-
## Requirements
8-
### Validated hardware
7+
## Validated hardware
98
* CPU: Intel® Core™ Ultra 7 processors
10-
* RAM: 32GB
9+
* RAM: 16GB
1110
* DISK: 128GB
1211

12+
## Prerequisite
13+
### 1. Install operating system
14+
Install the latest [Ubuntu* 22.04 LTS Desktop](https://releases.ubuntu.com/jammy/). Refer to [Ubuntu Desktop installation tutorial](https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview) if needed.
15+
16+
1317
### Application ports
1418
Please ensure that you have these ports available before running the applications.
1519

@@ -18,22 +22,7 @@ Please ensure that you have these ports available before running the application
1822
| Server | 5980 |
1923

2024
## Quick Start
21-
### 1. Install operating system
22-
Install the latest [Ubuntu* 22.04 LTS Desktop](https://releases.ubuntu.com/jammy/). Refer to [Ubuntu Desktop installation tutorial](https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview) if needed.
23-
24-
### 2. Clone repository
25-
This step will clone the repository
26-
```
27-
sudo apt install git
28-
git clone https://github.com/intel/edge-developer-kit-reference-scripts
29-
```
30-
31-
### 3. Go to the AI Video Analytics use case directory
32-
This step will redirect user to the current platform setup directory.
33-
```bash
34-
cd edge-developer-kit-reference-scripts/usecases/llm/ai-video-analytics
35-
```
36-
### 4. Model Preparation
25+
### 1. Model Preparation
3726
Download face detection and face regression models
3827
```bash
3928
sudo apt-get update
@@ -46,7 +35,7 @@ wget -O ./data/model/facial_recognition/face-detection-retail-0004.bin https://s
4635
wget -O ./data/model/facial_recognition/landmarks-regression-retail-0009.xml https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/landmarks-regression-retail-0009/FP32/landmarks-regression-retail-0009.xml
4736
wget -O ./data/model/facial_recognition/landmarks-regression-retail-0009.bin https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/landmarks-regression-retail-0009/FP32/landmarks-regression-retail-0009.bin
4837
```
49-
### 5. Setup environment
38+
### 2. Setup environment
5039
Setup the application dependencies
5140
```bash
5241
sudo apt-get update
@@ -57,20 +46,19 @@ python3 -m pip install -U pip
5746
python3 -m pip install -r requirements.txt
5847
```
5948

60-
### 6. Run the application
49+
### 3. Run the application
6150
Run the following command to start the app
6251
```bash
6352
source .venv/bin/activate
6453
python3 app.py
6554
```
6655

67-
### 7. Access the App
68-
1. Open browser Google Chrome
69-
2. Access http://localhost:5980
56+
### 4. Access the App
57+
Navigate to http://localhost:5980
7058

7159
## Docker Setup
7260
### Prerequisite
73-
1. Docker and docker compose should be setup before running the commands below. Refer to [here](https://docs.docker.com/engine/install/) to setup docker.
61+
Docker and docker compose should be setup before running the commands below. Refer to [here](https://docs.docker.com/engine/install/) to setup docker.
7462

7563
### 1. Build docker container
7664
```
@@ -82,5 +70,4 @@ docker compose build
8270
docker compose up -d
8371
```
8472
### 3. Access the App
85-
1. Open browser Google Chrome
86-
2. Access http://localhost:5980
73+
Navigate to http://localhost:5980
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

0 commit comments

Comments
 (0)