|
| 1 | +/* |
| 2 | + * Copyright (C) 2020-2024 Intel Corporation |
| 3 | + * SPDX-License-Identifier: Apache-2.0 |
| 4 | + */ |
| 5 | +#include <adapters/openvino_adapter.h> |
| 6 | +#include <gtest/gtest.h> |
| 7 | +#include <tasks/classification.h> |
| 8 | +#include <tasks/detection.h> |
| 9 | +#include <tasks/results.h> |
| 10 | +#include <stddef.h> |
| 11 | + |
| 12 | +#include <cstdint> |
| 13 | +#include <cstdio> |
| 14 | +#include <exception> |
| 15 | +#include <fstream> |
| 16 | +#include <iomanip> |
| 17 | +#include <iostream> |
| 18 | +#include <nlohmann/json.hpp> |
| 19 | +#include <opencv2/core.hpp> |
| 20 | +#include <stdexcept> |
| 21 | +#include <string> |
| 22 | +#include "utils/config.h" |
| 23 | + |
| 24 | +using json = nlohmann::json; |
| 25 | + |
| 26 | +std::string DATA_DIR = "../data"; |
| 27 | +std::string MODEL_PATH_TEMPLATE = "otx_models/%s.xml"; |
| 28 | +std::string IMAGE_PATH = "coco128/images/train2017/000000000074.jpg"; |
| 29 | + |
| 30 | +std::string TMP_MODEL_FILE = "tmp_model.xml"; |
| 31 | + |
| 32 | +struct ModelData { |
| 33 | + std::string name; |
| 34 | + ModelData(const std::string& name) : name(name) {} |
| 35 | +}; |
| 36 | + |
| 37 | +class MockAdapter : public OpenVINOInferenceAdapter { |
| 38 | +public: |
| 39 | + MockAdapter(const std::string& modelPath) : OpenVINOInferenceAdapter() { |
| 40 | + loadModel(modelPath, "CPU"); |
| 41 | + } |
| 42 | +}; |
| 43 | + |
| 44 | +class ClassificationModelParameterizedTest : public testing::TestWithParam<ModelData> {}; |
| 45 | + |
| 46 | +class SSDModelParameterizedTest : public testing::TestWithParam<ModelData> {}; |
| 47 | + |
| 48 | +class ClassificationModelParameterizedTestSaveLoad : public testing::TestWithParam<ModelData> { |
| 49 | +protected: |
| 50 | + void TearDown() override { |
| 51 | + auto fileName = TMP_MODEL_FILE; |
| 52 | + std::remove(fileName.c_str()); |
| 53 | + std::remove(fileName.replace(fileName.end() - 4, fileName.end(), ".bin").c_str()); |
| 54 | + } |
| 55 | +}; |
| 56 | + |
| 57 | +class DetectionModelParameterizedTestSaveLoad : public ClassificationModelParameterizedTestSaveLoad {}; |
| 58 | + |
| 59 | +template <typename... Args> |
| 60 | +std::string string_format(const std::string& fmt, Args... args) { |
| 61 | + size_t size = snprintf(nullptr, 0, fmt.c_str(), args...); |
| 62 | + std::string buf; |
| 63 | + buf.reserve(size + 1); |
| 64 | + buf.resize(size); |
| 65 | + snprintf(&buf[0], size + 1, fmt.c_str(), args...); |
| 66 | + return buf; |
| 67 | +} |
| 68 | + |
| 69 | +TEST_P(ClassificationModelParameterizedTest, TestClassificationDefaultConfig) { |
| 70 | + auto model_path = string_format(MODEL_PATH_TEMPLATE, GetParam().name.c_str(), GetParam().name.c_str()); |
| 71 | + bool preload = true; |
| 72 | + auto model = Classification::create_model(DATA_DIR + "/" + model_path, {}, preload, "CPU"); |
| 73 | + |
| 74 | + auto config = model.adapter->getModelConfig(); |
| 75 | + |
| 76 | + std::string model_type; |
| 77 | + model_type = utils::get_from_any_maps("model_type", config, {}, model_type); |
| 78 | + EXPECT_EQ(model_type, "Classification"); |
| 79 | + |
| 80 | + bool embedded_processing; |
| 81 | + embedded_processing = utils::get_from_any_maps("embedded_processing", config, {}, embedded_processing); |
| 82 | + EXPECT_TRUE(embedded_processing); |
| 83 | +} |
| 84 | + |
| 85 | +TEST_P(ClassificationModelParameterizedTest, TestClassificationCustomConfig) { |
| 86 | + GTEST_SKIP() << "Classification config tests fail on CI"; |
| 87 | + auto model_path = string_format(MODEL_PATH_TEMPLATE, GetParam().name.c_str(), GetParam().name.c_str()); |
| 88 | + std::vector<std::string> mock_labels; |
| 89 | + size_t num_classes = 1000; |
| 90 | + for (size_t i = 0; i < num_classes; i++) { |
| 91 | + mock_labels.push_back(std::to_string(i)); |
| 92 | + } |
| 93 | + ov::AnyMap configuration = {{"layout", "data:HWC"}, {"resize_type", "fit_to_window"}, {"labels", mock_labels}}; |
| 94 | + bool preload = true; |
| 95 | + auto model = Classification::create_model(DATA_DIR + "/" + model_path, configuration, preload, "CPU"); |
| 96 | + |
| 97 | + auto config = model.adapter->getModelConfig(); |
| 98 | + std::string layout; |
| 99 | + layout = utils::get_from_any_maps("layout", config, {}, layout); |
| 100 | + EXPECT_EQ(layout, configuration.at("layout").as<std::string>()); |
| 101 | + |
| 102 | + std::string resize_type; |
| 103 | + resize_type = utils::get_from_any_maps("resize_type", config, {}, resize_type); |
| 104 | + EXPECT_EQ(resize_type, configuration.at("resize_type").as<std::string>()); |
| 105 | + |
| 106 | + std::vector<std::string> labels; |
| 107 | + labels = utils::get_from_any_maps("labels", config, {}, labels); |
| 108 | + for (size_t i = 0; i < num_classes; i++) { |
| 109 | + EXPECT_EQ(labels[i], mock_labels[i]); |
| 110 | + } |
| 111 | +} |
| 112 | + |
| 113 | +//TEST_P(ClassificationModelParameterizedTestSaveLoad, TestClassificationCorrectnessAfterSaveLoad) { |
| 114 | +// cv::Mat image = cv::imread(DATA_DIR + "/" + IMAGE_PATH); |
| 115 | +// if (!image.data) { |
| 116 | +// throw std::runtime_error{"Failed to read the image"}; |
| 117 | +// } |
| 118 | +// |
| 119 | +// auto model_path = string_format(MODEL_PATH_TEMPLATE, GetParam().name.c_str(), GetParam().name.c_str()); |
| 120 | +// std::cout << model_path << "\n"; |
| 121 | +// bool preload = true; |
| 122 | +// auto model = Classification::create_model(DATA_DIR + "/" + model_path, {}, preload, "CPU"); |
| 123 | +// |
| 124 | +// auto ov_model = model->getModel(); |
| 125 | +// ov::serialize(ov_model, TMP_MODEL_FILE); |
| 126 | +// |
| 127 | +// auto result = model->infer(image)->topLabels; |
| 128 | +// |
| 129 | +// auto model_restored = ClassificationModel::create_model(TMP_MODEL_FILE, {}, preload, "CPU"); |
| 130 | +// auto result_data = model_restored->infer(image); |
| 131 | +// auto result_restored = result_data->topLabels; |
| 132 | +// |
| 133 | +// EXPECT_EQ(result_restored[0].id, result[0].id); |
| 134 | +// EXPECT_EQ(result_restored[0].score, result[0].score); |
| 135 | +//} |
| 136 | +// |
| 137 | +//TEST_P(ClassificationModelParameterizedTestSaveLoad, TestClassificationCorrectnessAfterSaveLoadWithAdapter) { |
| 138 | +// cv::Mat image = cv::imread(DATA_DIR + "/" + IMAGE_PATH); |
| 139 | +// if (!image.data) { |
| 140 | +// throw std::runtime_error{"Failed to read the image"}; |
| 141 | +// } |
| 142 | +// |
| 143 | +// auto model_path = string_format(MODEL_PATH_TEMPLATE, GetParam().name.c_str(), GetParam().name.c_str()); |
| 144 | +// bool preload = true; |
| 145 | +// auto model = ClassificationModel::create_model(DATA_DIR + "/" + model_path, {}, preload, "CPU"); |
| 146 | +// auto ov_model = model->getModel(); |
| 147 | +// ov::serialize(ov_model, TMP_MODEL_FILE); |
| 148 | +// auto result = model->infer(image)->topLabels; |
| 149 | +// |
| 150 | +// std::shared_ptr<InferenceAdapter> adapter = std::make_shared<MockAdapter>(TMP_MODEL_FILE); |
| 151 | +// auto model_restored = ClassificationModel::create_model(adapter); |
| 152 | +// auto result_data = model_restored->infer(image); |
| 153 | +// auto result_restored = result_data->topLabels; |
| 154 | +// |
| 155 | +// EXPECT_EQ(result_restored[0].id, result[0].id); |
| 156 | +// EXPECT_EQ(result_restored[0].score, result[0].score); |
| 157 | +//} |
| 158 | + |
| 159 | +TEST_P(SSDModelParameterizedTest, TestDetectionDefaultConfig) { |
| 160 | + auto model_path = string_format(MODEL_PATH_TEMPLATE, GetParam().name.c_str(), GetParam().name.c_str()); |
| 161 | + bool preload = true; |
| 162 | + auto model = DetectionModel::create_model(DATA_DIR + "/" + model_path, {}, preload, "CPU"); |
| 163 | + |
| 164 | + auto config = model.algorithm->adapter->getModelConfig(); |
| 165 | + |
| 166 | + std::string model_type; |
| 167 | + model_type = utils::get_from_any_maps("model_type", config, {}, model_type); |
| 168 | + EXPECT_EQ(model_type, "ssd"); |
| 169 | + |
| 170 | + bool embedded_processing; |
| 171 | + embedded_processing = utils::get_from_any_maps("embedded_processing", config, {}, embedded_processing); |
| 172 | + EXPECT_TRUE(embedded_processing); |
| 173 | +} |
| 174 | + |
| 175 | +TEST_P(SSDModelParameterizedTest, TestDetectionCustomConfig) { |
| 176 | + GTEST_SKIP() << "Detection config tests fail on CI"; |
| 177 | + auto model_path = string_format(MODEL_PATH_TEMPLATE, GetParam().name.c_str(), GetParam().name.c_str()); |
| 178 | + std::vector<std::string> mock_labels; |
| 179 | + size_t num_classes = 80; |
| 180 | + for (size_t i = 0; i < num_classes; i++) { |
| 181 | + mock_labels.push_back(std::to_string(i)); |
| 182 | + } |
| 183 | + ov::AnyMap configuration = {{"layout", "data:HWC"}, {"resize_type", "fit_to_window"}, {"labels", mock_labels}}; |
| 184 | + bool preload = true; |
| 185 | + auto model = DetectionModel::create_model(DATA_DIR + "/" + model_path, configuration, preload, "CPU"); |
| 186 | + |
| 187 | + auto config = model.algorithm->adapter->getModelConfig(); |
| 188 | + std::string layout; |
| 189 | + layout = utils::get_from_any_maps("layout", config, {}, layout); |
| 190 | + EXPECT_EQ(layout, configuration.at("layout").as<std::string>()); |
| 191 | + |
| 192 | + std::string resize_type; |
| 193 | + resize_type = utils::get_from_any_maps("resize_type", config, {}, resize_type); |
| 194 | + EXPECT_EQ(resize_type, configuration.at("resize_type").as<std::string>()); |
| 195 | + |
| 196 | + std::vector<std::string> labels; |
| 197 | + labels = utils::get_from_any_maps("labels", config, {}, labels); |
| 198 | + for (size_t i = 0; i < num_classes; i++) { |
| 199 | + EXPECT_EQ(labels[i], mock_labels[i]); |
| 200 | + } |
| 201 | +} |
| 202 | + |
| 203 | +//TEST_P(DetectionModelParameterizedTestSaveLoad, TestDetctionCorrectnessAfterSaveLoad) { |
| 204 | +// cv::Mat image = cv::imread(DATA_DIR + "/" + IMAGE_PATH); |
| 205 | +// if (!image.data) { |
| 206 | +// throw std::runtime_error{"Failed to read the image"}; |
| 207 | +// } |
| 208 | +// |
| 209 | +// auto model_path = string_format(MODEL_PATH_TEMPLATE, GetParam().name.c_str(), GetParam().name.c_str()); |
| 210 | +// bool preload = true; |
| 211 | +// auto model = DetectionModel::create_model(DATA_DIR + "/" + model_path, {}, preload, "CPU"); |
| 212 | +// |
| 213 | +// auto ov_model = model->getModel(); |
| 214 | +// ov::serialize(ov_model, TMP_MODEL_FILE); |
| 215 | +// |
| 216 | +// auto result = model->infer(image)->objects; |
| 217 | +// |
| 218 | +// image = cv::imread(DATA_DIR + "/" + IMAGE_PATH); |
| 219 | +// if (!image.data) { |
| 220 | +// throw std::runtime_error{"Failed to read the image"}; |
| 221 | +// } |
| 222 | +// auto model_restored = DetectionModel::create_model(TMP_MODEL_FILE, {}, "", preload, "CPU"); |
| 223 | +// auto result_data = model_restored->infer(image); |
| 224 | +// auto result_restored = result_data->objects; |
| 225 | +// |
| 226 | +// ASSERT_EQ(result.size(), result_restored.size()); |
| 227 | +// |
| 228 | +// for (size_t i = 0; i < result.size(); i++) { |
| 229 | +// ASSERT_EQ(result[i].x, result_restored[i].x); |
| 230 | +// ASSERT_EQ(result[i].y, result_restored[i].y); |
| 231 | +// ASSERT_EQ(result[i].width, result_restored[i].width); |
| 232 | +// ASSERT_EQ(result[i].height, result_restored[i].height); |
| 233 | +// } |
| 234 | +//} |
| 235 | +// |
| 236 | +//TEST_P(DetectionModelParameterizedTestSaveLoad, TestDetctionCorrectnessAfterSaveLoadWithAdapter) { |
| 237 | +// cv::Mat image = cv::imread(DATA_DIR + "/" + IMAGE_PATH); |
| 238 | +// if (!image.data) { |
| 239 | +// throw std::runtime_error{"Failed to read the image"}; |
| 240 | +// } |
| 241 | +// |
| 242 | +// auto model_path = string_format(MODEL_PATH_TEMPLATE, GetParam().name.c_str(), GetParam().name.c_str()); |
| 243 | +// bool preload = true; |
| 244 | +// auto model = DetectionModel::create_model(DATA_DIR + "/" + model_path, {}, "", preload, "CPU"); |
| 245 | +// auto ov_model = model->getModel(); |
| 246 | +// ov::serialize(ov_model, TMP_MODEL_FILE); |
| 247 | +// auto result = model->infer(image)->objects; |
| 248 | +// |
| 249 | +// image = cv::imread(DATA_DIR + "/" + IMAGE_PATH); |
| 250 | +// if (!image.data) { |
| 251 | +// throw std::runtime_error{"Failed to read the image"}; |
| 252 | +// } |
| 253 | +// |
| 254 | +// std::shared_ptr<InferenceAdapter> adapter = std::make_shared<MockAdapter>(TMP_MODEL_FILE); |
| 255 | +// auto model_restored = DetectionModel::create_model(adapter); |
| 256 | +// auto result_data = model_restored->infer(image); |
| 257 | +// auto result_restored = result_data->objects; |
| 258 | +// |
| 259 | +// ASSERT_EQ(result.size(), result_restored.size()); |
| 260 | +// |
| 261 | +// for (size_t i = 0; i < result.size(); i++) { |
| 262 | +// ASSERT_EQ(result[i].x, result_restored[i].x); |
| 263 | +// ASSERT_EQ(result[i].y, result_restored[i].y); |
| 264 | +// ASSERT_EQ(result[i].width, result_restored[i].width); |
| 265 | +// ASSERT_EQ(result[i].height, result_restored[i].height); |
| 266 | +// } |
| 267 | +//} |
| 268 | + |
| 269 | +INSTANTIATE_TEST_SUITE_P(ClassificationTestInstance, |
| 270 | + ClassificationModelParameterizedTest, |
| 271 | + ::testing::Values(ModelData("mlc_mobilenetv3_large_voc"))); |
| 272 | +//INSTANTIATE_TEST_SUITE_P(ClassificationTestInstance, |
| 273 | +// ClassificationModelParameterizedTestSaveLoad, |
| 274 | +// ::testing::Values(ModelData("mlc_mobilenetv3_large_voc"))); |
| 275 | +INSTANTIATE_TEST_SUITE_P(SSDTestInstance, |
| 276 | + SSDModelParameterizedTest, |
| 277 | + ::testing::Values(ModelData("detection_model_with_xai_head"))); |
| 278 | +//INSTANTIATE_TEST_SUITE_P(SSDTestInstance, |
| 279 | +// DetectionModelParameterizedTestSaveLoad, |
| 280 | +// ::testing::Values(ModelData("detection_model_with_xai_head"))); |
| 281 | + |
| 282 | +class InputParser { |
| 283 | +public: |
| 284 | + InputParser(int& argc, char** argv) { |
| 285 | + for (int i = 1; i < argc; ++i) |
| 286 | + this->tokens.push_back(std::string(argv[i])); |
| 287 | + } |
| 288 | + |
| 289 | + const std::string& getCmdOption(const std::string& option) const { |
| 290 | + std::vector<std::string>::const_iterator itr; |
| 291 | + itr = std::find(this->tokens.begin(), this->tokens.end(), option); |
| 292 | + if (itr != this->tokens.end() && ++itr != this->tokens.end()) { |
| 293 | + return *itr; |
| 294 | + } |
| 295 | + static const std::string empty_string(""); |
| 296 | + return empty_string; |
| 297 | + } |
| 298 | + |
| 299 | + bool cmdOptionExists(const std::string& option) const { |
| 300 | + return std::find(this->tokens.begin(), this->tokens.end(), option) != this->tokens.end(); |
| 301 | + } |
| 302 | + |
| 303 | +private: |
| 304 | + std::vector<std::string> tokens; |
| 305 | +}; |
| 306 | + |
| 307 | +void print_help(const char* program_name) { |
| 308 | + std::cout << "Usage: " << program_name << "-d <path_to_data>" << std::endl; |
| 309 | +} |
| 310 | + |
| 311 | +int main(int argc, char** argv) { |
| 312 | + InputParser input(argc, argv); |
| 313 | + |
| 314 | + if (input.cmdOptionExists("-h")) { |
| 315 | + print_help(argv[0]); |
| 316 | + return 1; |
| 317 | + } |
| 318 | + |
| 319 | + const std::string& data_dir = input.getCmdOption("-d"); |
| 320 | + if (!data_dir.empty()) { |
| 321 | + DATA_DIR = data_dir; |
| 322 | + } else { |
| 323 | + print_help(argv[0]); |
| 324 | + return 1; |
| 325 | + } |
| 326 | + |
| 327 | + testing::InitGoogleTest(&argc, argv); |
| 328 | + |
| 329 | + return RUN_ALL_TESTS(); |
| 330 | +} |
0 commit comments