|
| 1 | +{ |
| 2 | + "models": [ |
| 3 | + { |
| 4 | + "model_short_name": "mobilenet_v3_small", |
| 5 | + "model_class_name": "torchvision.models.mobilenetv3.mobilenet_v3_small", |
| 6 | + "model_full_name": "MobileNetV3-Small", |
| 7 | + "description": "MobileNetV3 Small - Efficient convolutional neural network for mobile and embedded vision applications", |
| 8 | + "docs": "https://docs.pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html#torchvision.models.mobilenet_v3_small", |
| 9 | + "weights_url": "https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth", |
| 10 | + "input_shape": [1, 3, 224, 224], |
| 11 | + "input_names": ["image"], |
| 12 | + "output_names": ["output1"], |
| 13 | + "model_params": null, |
| 14 | + "model_type": "Classification", |
| 15 | + "reverse_input_channels": false, |
| 16 | + "mean_values": "123.675 116.28 103.53", |
| 17 | + "scale_values": "58.395 57.12 57.375", |
| 18 | + "labels": "IMAGENET1K_V1" |
| 19 | + }, |
| 20 | + { |
| 21 | + "model_short_name": "efficientnet_b0", |
| 22 | + "model_class_name": "torchvision.models.efficientnet.efficientnet_b0", |
| 23 | + "model_full_name": "EfficientNet-B0", |
| 24 | + "description": "EfficientNet-B0 - Efficient convolutional neural network with compound scaling", |
| 25 | + "docs": "https://docs.pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b0.html#torchvision.models.efficientnet_b0", |
| 26 | + "weights_url": "https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth", |
| 27 | + "input_shape": [1, 3, 224, 224], |
| 28 | + "input_names": ["image"], |
| 29 | + "output_names": ["logits"], |
| 30 | + "model_params": null, |
| 31 | + "model_type": "Classification", |
| 32 | + "reverse_input_channels": true, |
| 33 | + "mean_values": "123.675 116.28 103.53", |
| 34 | + "scale_values": "58.395 57.12 57.375", |
| 35 | + "labels": "IMAGENET1K_V1" |
| 36 | + }, |
| 37 | + { |
| 38 | + "model_short_name": "resnet18", |
| 39 | + "model_class_name": "torchvision.models.resnet.resnet18", |
| 40 | + "model_full_name": "ResNet-18", |
| 41 | + "description": "ResNet-18 - 18-layer residual learning network for image classification", |
| 42 | + "weights_url": "https://download.pytorch.org/models/resnet18-f37072fd.pth", |
| 43 | + "input_shape": [1, 3, 224, 224], |
| 44 | + "input_names": ["image"], |
| 45 | + "output_names": ["output"], |
| 46 | + "model_params": null, |
| 47 | + "model_type": "Classification", |
| 48 | + "reverse_input_channels": true, |
| 49 | + "mean_values": "123.675 116.28 103.53", |
| 50 | + "scale_values": "58.395 57.12 57.375", |
| 51 | + "labels": "IMAGENET1K_V1" |
| 52 | + }, |
| 53 | + { |
| 54 | + "model_short_name": "resnet50", |
| 55 | + "model_class_name": "torchvision.models.resnet.resnet50", |
| 56 | + "model_full_name": "ResNet-50", |
| 57 | + "description": "ResNet-50 - 50-layer residual learning network for image classification", |
| 58 | + "weights_url": "https://download.pytorch.org/models/resnet50-0676ba61.pth", |
| 59 | + "input_shape": [1, 3, 224, 224], |
| 60 | + "input_names": ["image"], |
| 61 | + "output_names": ["output"], |
| 62 | + "model_params": null, |
| 63 | + "model_type": "Classification", |
| 64 | + "reverse_input_channels": true, |
| 65 | + "mean_values": "123.675 116.28 103.53", |
| 66 | + "scale_values": "58.395 57.12 57.375", |
| 67 | + "labels": "IMAGENET1K_V1" |
| 68 | + }, |
| 69 | + { |
| 70 | + "model_short_name": "squeezenet1_0", |
| 71 | + "model_class_name": "torchvision.models.squeezenet.squeezenet1_0", |
| 72 | + "model_full_name": "SqueezeNet 1.0", |
| 73 | + "description": "SqueezeNet 1.0 - Small CNN with AlexNet-level accuracy and 50x fewer parameters", |
| 74 | + "weights_url": "https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth", |
| 75 | + "input_shape": [1, 3, 224, 224], |
| 76 | + "input_names": ["image"], |
| 77 | + "output_names": ["output"], |
| 78 | + "model_params": null, |
| 79 | + "model_type": "Classification", |
| 80 | + "reverse_input_channels": true, |
| 81 | + "mean_values": "123.675 116.28 103.53", |
| 82 | + "scale_values": "58.395 57.12 57.375", |
| 83 | + "labels": "IMAGENET1K_V1" |
| 84 | + }, |
| 85 | + { |
| 86 | + "model_short_name": "vgg16", |
| 87 | + "model_class_name": "torchvision.models.vgg.vgg16", |
| 88 | + "model_full_name": "VGG-16", |
| 89 | + "description": "VGG-16 - 16-layer deep convolutional network", |
| 90 | + "weights_url": "https://download.pytorch.org/models/vgg16-397923af.pth", |
| 91 | + "input_shape": [1, 3, 224, 224], |
| 92 | + "input_names": ["image"], |
| 93 | + "output_names": ["output"], |
| 94 | + "model_params": null, |
| 95 | + "model_type": "Classification", |
| 96 | + "reverse_input_channels": true, |
| 97 | + "mean_values": "123.675 116.28 103.53", |
| 98 | + "scale_values": "58.395 57.12 57.375", |
| 99 | + "labels": "IMAGENET1K_V1" |
| 100 | + } |
| 101 | + ] |
| 102 | +} |
0 commit comments