|
| 1 | +/* |
| 2 | + * Copyright (C) 2025 Intel Corporation |
| 3 | + * SPDX-License-Identifier: Apache-2.0 |
| 4 | + */ |
| 5 | + |
| 6 | +#include <nanobind/ndarray.h> |
| 7 | +#include <nanobind/operators.h> |
| 8 | +#include <nanobind/stl/map.h> |
| 9 | +#include <nanobind/stl/string.h> |
| 10 | +#include <nanobind/stl/unique_ptr.h> |
| 11 | +#include <nanobind/stl/vector.h> |
| 12 | + |
| 13 | +#include "models/instance_segmentation.h" |
| 14 | +#include "models/results.h" |
| 15 | +#include "py_utils.hpp" |
| 16 | + |
| 17 | +namespace pyutils = vision::nanobind::utils; |
| 18 | + |
| 19 | +using ScoresOutput = nb::ndarray<float, nb::numpy, nb::c_contig>; |
| 20 | +using LabelsOutput = nb::ndarray<size_t, nb::numpy, nb::c_contig>; |
| 21 | + |
| 22 | +void init_instance_segmentation(nb::module_& m) { |
| 23 | + nb::class_<MaskRCNNModel, ImageModel>(m, "MaskRCNNModel") |
| 24 | + .def_static( |
| 25 | + "create_model", |
| 26 | + [](const std::string& model_path, |
| 27 | + const std::map<std::string, nb::object>& configuration, |
| 28 | + bool preload, |
| 29 | + const std::string& device) { |
| 30 | + auto ov_any_config = ov::AnyMap(); |
| 31 | + for (const auto& item : configuration) { |
| 32 | + ov_any_config[item.first] = pyutils::py_object_to_any(item.second, item.first); |
| 33 | + } |
| 34 | + |
| 35 | + |
| 36 | + return MaskRCNNModel::create_model(model_path, ov_any_config, preload, device); |
| 37 | + }, |
| 38 | + nb::arg("model_path"), |
| 39 | + nb::arg("configuration") = ov::AnyMap({}), |
| 40 | + nb::arg("preload") = true, |
| 41 | + nb::arg("device") = "AUTO") |
| 42 | + |
| 43 | + .def("__call__", |
| 44 | + [](MaskRCNNModel& self, const nb::ndarray<>& input) { |
| 45 | + return self.infer(pyutils::wrap_np_mat(input)); |
| 46 | + }) |
| 47 | + .def("infer_batch", |
| 48 | + [](MaskRCNNModel& self, const std::vector<nb::ndarray<>> inputs) { |
| 49 | + std::vector<ImageInputData> input_mats; |
| 50 | + input_mats.reserve(inputs.size()); |
| 51 | + |
| 52 | + for (const auto& input : inputs) { |
| 53 | + input_mats.push_back(pyutils::wrap_np_mat(input)); |
| 54 | + } |
| 55 | + |
| 56 | + return self.inferBatch(input_mats); |
| 57 | + }) |
| 58 | + .def_prop_ro_static("__model__", [](nb::object) { |
| 59 | + return MaskRCNNModel::ModelType; |
| 60 | + }); |
| 61 | + |
| 62 | + nb::class_<InstanceSegmentationResult, ResultBase>(m, "InstanceSegmentationResult") |
| 63 | + .def(nb::init<int64_t, std::shared_ptr<MetaData>>(), nb::arg("frameId") = -1, nb::arg("metaData") = nullptr) |
| 64 | + .def_prop_ro( |
| 65 | + "feature_vector", |
| 66 | + [](InstanceSegmentationResult& r) { |
| 67 | + if (!r.feature_vector) { |
| 68 | + return nb::ndarray<float, nb::numpy, nb::c_contig>(); |
| 69 | + } |
| 70 | + |
| 71 | + return nb::ndarray<float, nb::numpy, nb::c_contig>(r.feature_vector.data(), |
| 72 | + r.feature_vector.get_shape().size(), |
| 73 | + r.feature_vector.get_shape().data()); |
| 74 | + }, |
| 75 | + nb::rv_policy::reference_internal) |
| 76 | + .def_prop_ro("label_names", |
| 77 | + [](InstanceSegmentationResult& r) { |
| 78 | + size_t labels_count = static_cast<size_t>(r.segmentedObjects.size()); |
| 79 | + std::vector<std::string> labels(labels_count); |
| 80 | + |
| 81 | + for (size_t i = 0; i < labels_count; ++i) { |
| 82 | + labels[i] = r.segmentedObjects[i].label; |
| 83 | + } |
| 84 | + |
| 85 | + return labels; |
| 86 | + }) |
| 87 | + .def_prop_ro("labels", |
| 88 | + [](InstanceSegmentationResult& r) { |
| 89 | + size_t labels_count = static_cast<size_t>(r.segmentedObjects.size()); |
| 90 | + std::vector<size_t> labels(labels_count); |
| 91 | + |
| 92 | + for (size_t i = 0; i < labels_count; ++i) { |
| 93 | + labels[i] = r.segmentedObjects[i].labelID; |
| 94 | + } |
| 95 | + |
| 96 | + return LabelsOutput(labels.data(), {labels_count}).cast(); |
| 97 | + }) |
| 98 | + .def_prop_ro("scores", |
| 99 | + [](InstanceSegmentationResult& r) { |
| 100 | + size_t scores_count = static_cast<size_t>(r.segmentedObjects.size()); |
| 101 | + std::vector<float> scores(scores_count); |
| 102 | + |
| 103 | + for (size_t i = 0; i < scores_count; ++i) { |
| 104 | + scores[i] = r.segmentedObjects[i].confidence; |
| 105 | + } |
| 106 | + |
| 107 | + return ScoresOutput(scores.data(), {scores_count}).cast(); |
| 108 | + }) |
| 109 | + .def_prop_ro("bboxes", |
| 110 | + [](InstanceSegmentationResult& r) { |
| 111 | + size_t boxes_count = static_cast<size_t>(r.segmentedObjects.size()); |
| 112 | + std::vector<std::vector<int>> boxes(boxes_count); |
| 113 | + |
| 114 | + for (size_t i = 0; i < boxes_count; ++i) { |
| 115 | + std::vector<int> box(4); |
| 116 | + box[0] = r.segmentedObjects[i].tl().x; |
| 117 | + box[1] = r.segmentedObjects[i].tl().y; |
| 118 | + box[2] = r.segmentedObjects[i].br().x; |
| 119 | + box[3] = r.segmentedObjects[i].br().y; |
| 120 | + boxes[i] = box; |
| 121 | + } |
| 122 | + |
| 123 | + return boxes; |
| 124 | + }) |
| 125 | + .def_prop_ro("masks", |
| 126 | + [](InstanceSegmentationResult& r) { |
| 127 | + size_t elements_count = static_cast<size_t>(r.segmentedObjects.size()); |
| 128 | + std::vector<std::vector<std::vector<int>>> masks(elements_count); |
| 129 | + |
| 130 | + for (size_t i = 0; i < elements_count; ++i) { |
| 131 | + int rows = r.segmentedObjects[i].mask.rows; |
| 132 | + int cols = r.segmentedObjects[i].mask.cols; |
| 133 | + |
| 134 | + std::vector<std::vector<int>> mask(rows, std::vector<int>(cols)); |
| 135 | + |
| 136 | + for (int row = 0; row < rows; ++row) { |
| 137 | + for (int col = 0; col < cols; ++col) { |
| 138 | + mask[row][col] = r.segmentedObjects[i].mask.at<uint8_t>(row, col); |
| 139 | + } |
| 140 | + } |
| 141 | + |
| 142 | + masks[i] = mask; |
| 143 | + } |
| 144 | + |
| 145 | + return masks; |
| 146 | + }) |
| 147 | + .def_prop_ro( |
| 148 | + "saliency_map", |
| 149 | + [](InstanceSegmentationResult& r) { |
| 150 | + if (r.saliency_map.empty()) { |
| 151 | + return nb::ndarray<uint8_t, nb::numpy, nb::c_contig>(); |
| 152 | + } |
| 153 | + int rows = r.saliency_map[0].rows; |
| 154 | + int cols = r.saliency_map[0].cols; |
| 155 | + int num_matrices = r.saliency_map.size(); |
| 156 | + |
| 157 | + return nb::ndarray<uint8_t, nb::numpy, nb::c_contig>(&r.saliency_map, |
| 158 | + {static_cast<size_t>(num_matrices), |
| 159 | + static_cast<size_t>(rows), |
| 160 | + static_cast<size_t>(cols)}); |
| 161 | + }, |
| 162 | + nb::rv_policy::reference_internal); |
| 163 | +} |
0 commit comments