Skip to content

Commit f0c424c

Browse files
committed
Fix precommit tests
1 parent 09f943c commit f0c424c

File tree

2 files changed

+25
-25
lines changed

2 files changed

+25
-25
lines changed

tests/cpp/precommit/test_model_config.cpp

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -122,14 +122,14 @@ TEST_P(ClassificationModelParameterizedTestSaveLoad, TestClassificationCorrectne
122122
auto ov_model = model->getModel();
123123
ov::serialize(ov_model, TMP_MODEL_FILE);
124124

125-
auto result = model->infer(image)->topLabels;
125+
auto result = model->infer(image)->boxes;
126126

127127
auto model_restored = ClassificationModel::create_model(TMP_MODEL_FILE, {}, preload, "CPU");
128128
auto result_data = model_restored->infer(image);
129-
auto result_restored = result_data->topLabels;
129+
auto result_restored = result_data->boxes;
130130

131-
EXPECT_EQ(result_restored[0].id, result[0].id);
132-
EXPECT_EQ(result_restored[0].score, result[0].score);
131+
EXPECT_EQ(result_restored[0].labels[0].label.id, result[0].labels[0].label.id);
132+
EXPECT_EQ(result_restored[0].labels[0].score, result[0].labels[0].score);
133133
}
134134

135135
TEST_P(ClassificationModelParameterizedTestSaveLoad, TestClassificationCorrectnessAfterSaveLoadWithAdapter) {
@@ -143,15 +143,15 @@ TEST_P(ClassificationModelParameterizedTestSaveLoad, TestClassificationCorrectne
143143
auto model = ClassificationModel::create_model(DATA_DIR + "/" + model_path, {}, preload, "CPU");
144144
auto ov_model = model->getModel();
145145
ov::serialize(ov_model, TMP_MODEL_FILE);
146-
auto result = model->infer(image)->topLabels;
146+
auto result = model->infer(image)->boxes;
147147

148148
std::shared_ptr<InferenceAdapter> adapter = std::make_shared<MockAdapter>(TMP_MODEL_FILE);
149149
auto model_restored = ClassificationModel::create_model(adapter);
150150
auto result_data = model_restored->infer(image);
151-
auto result_restored = result_data->topLabels;
151+
auto result_restored = result_data->boxes;
152152

153-
EXPECT_EQ(result_restored[0].id, result[0].id);
154-
EXPECT_EQ(result_restored[0].score, result[0].score);
153+
EXPECT_EQ(result_restored[0].labels[0].label.id, result[0].labels[0].label.id);
154+
EXPECT_EQ(result_restored[0].labels[0].score, result[0].labels[0].score);
155155
}
156156

157157
TEST_P(SSDModelParameterizedTest, TestDetectionDefaultConfig) {
@@ -206,23 +206,23 @@ TEST_P(DetectionModelParameterizedTestSaveLoad, TestDetctionCorrectnessAfterSave
206206
auto ov_model = model->getModel();
207207
ov::serialize(ov_model, TMP_MODEL_FILE);
208208

209-
auto result = model->infer(image)->objects;
209+
auto result = model->infer(image)->boxes;
210210

211211
image = cv::imread(DATA_DIR + "/" + IMAGE_PATH);
212212
if (!image.data) {
213213
throw std::runtime_error{"Failed to read the image"};
214214
}
215215
auto model_restored = DetectionModel::create_model(TMP_MODEL_FILE, {}, "", preload, "CPU");
216216
auto result_data = model_restored->infer(image);
217-
auto result_restored = result_data->objects;
217+
auto result_restored = result_data->boxes;
218218

219219
ASSERT_EQ(result.size(), result_restored.size());
220220

221221
for (size_t i = 0; i < result.size(); i++) {
222-
ASSERT_EQ(result[i].x, result_restored[i].x);
223-
ASSERT_EQ(result[i].y, result_restored[i].y);
224-
ASSERT_EQ(result[i].width, result_restored[i].width);
225-
ASSERT_EQ(result[i].height, result_restored[i].height);
222+
ASSERT_EQ(result[i].shape.x, result_restored[i].shape.x);
223+
ASSERT_EQ(result[i].shape.y, result_restored[i].shape.y);
224+
ASSERT_EQ(result[i].shape.width, result_restored[i].shape.width);
225+
ASSERT_EQ(result[i].shape.height, result_restored[i].shape.height);
226226
}
227227
}
228228

@@ -237,7 +237,7 @@ TEST_P(DetectionModelParameterizedTestSaveLoad, TestDetctionCorrectnessAfterSave
237237
auto model = DetectionModel::create_model(DATA_DIR + "/" + model_path, {}, "", preload, "CPU");
238238
auto ov_model = model->getModel();
239239
ov::serialize(ov_model, TMP_MODEL_FILE);
240-
auto result = model->infer(image)->objects;
240+
auto result = model->infer(image)->boxes;
241241

242242
image = cv::imread(DATA_DIR + "/" + IMAGE_PATH);
243243
if (!image.data) {
@@ -247,15 +247,15 @@ TEST_P(DetectionModelParameterizedTestSaveLoad, TestDetctionCorrectnessAfterSave
247247
std::shared_ptr<InferenceAdapter> adapter = std::make_shared<MockAdapter>(TMP_MODEL_FILE);
248248
auto model_restored = DetectionModel::create_model(adapter);
249249
auto result_data = model_restored->infer(image);
250-
auto result_restored = result_data->objects;
250+
auto result_restored = result_data->boxes;
251251

252252
ASSERT_EQ(result.size(), result_restored.size());
253253

254254
for (size_t i = 0; i < result.size(); i++) {
255-
ASSERT_EQ(result[i].x, result_restored[i].x);
256-
ASSERT_EQ(result[i].y, result_restored[i].y);
257-
ASSERT_EQ(result[i].width, result_restored[i].width);
258-
ASSERT_EQ(result[i].height, result_restored[i].height);
255+
ASSERT_EQ(result[i].shape.x, result_restored[i].shape.x);
256+
ASSERT_EQ(result[i].shape.y, result_restored[i].shape.y);
257+
ASSERT_EQ(result[i].shape.width, result_restored[i].shape.width);
258+
ASSERT_EQ(result[i].shape.height, result_restored[i].shape.height);
259259
}
260260
}
261261

tests/cpp/precommit/test_sanity.cpp

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -73,17 +73,17 @@ TEST_P(ModelParameterizedTest, SynchronousInference) {
7373
bool preload = true;
7474
auto model = DetectionModel::create_model(DATA_DIR + "/" + model_path, {}, "", preload, "CPU");
7575
auto result = model->infer(image);
76-
EXPECT_GT(result->objects.size(), 0);
76+
EXPECT_GT(result->boxes.size(), 0);
7777
} else if ("ClassificationModel" == GetParam().type) {
7878
bool preload = true;
7979
auto model = ClassificationModel::create_model(DATA_DIR + "/" + model_path, {}, preload, "CPU");
80-
std::unique_ptr<ClassificationResult> result = model->infer(image);
81-
ASSERT_GT(result->topLabels.size(), 0);
82-
EXPECT_GT(result->topLabels.front().score, 0.0f);
80+
auto result = model->infer(image);
81+
ASSERT_GT(result->boxes.size(), 0);
82+
EXPECT_GT(result->boxes.front().labels.front().score, 0.0f);
8383
} else if ("SegmentationModel" == GetParam().type) {
8484
bool preload = true;
8585
auto model = SegmentationModel::create_model(DATA_DIR + "/" + model_path, {}, preload, "CPU");
86-
auto result = model->infer(image)->asRef<ImageResultWithSoftPrediction>();
86+
auto result = model->infer(image);
8787
ASSERT_GT(model->getContours(result).size(), 0);
8888
}
8989
}

0 commit comments

Comments
 (0)