Skip to content

Commit f661f84

Browse files
authored
Add several onnx models (#121)
1 parent 3ebe7ac commit f661f84

File tree

2 files changed

+35
-0
lines changed

2 files changed

+35
-0
lines changed

tests/python/accuracy/prepare_data.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -54,15 +54,20 @@ def prepare_data(data_dir="./data"):
5454
retrieve_otx_model(args.data_dir, "mlc_efficient_b0_voc")
5555
retrieve_otx_model(args.data_dir, "mlc_efficient_v2s_voc")
5656
retrieve_otx_model(args.data_dir, "det_mobilenetv2_atss_bccd")
57+
retrieve_otx_model(args.data_dir, "det_mobilenetv2_atss_bccd_onnx", "onnx")
5758
retrieve_otx_model(args.data_dir, "cls_mobilenetv3_large_cars")
5859
retrieve_otx_model(args.data_dir, "cls_mobilenetv3_large_cars", "onnx")
5960
retrieve_otx_model(args.data_dir, "cls_efficient_b0_cars")
6061
retrieve_otx_model(args.data_dir, "cls_efficient_v2s_cars")
6162
retrieve_otx_model(args.data_dir, "Lite-hrnet-18")
6263
retrieve_otx_model(args.data_dir, "Lite-hrnet-18_mod2")
6364
retrieve_otx_model(args.data_dir, "Lite-hrnet-s_mod2")
65+
retrieve_otx_model(args.data_dir, "Lite-hrnet-s_mod2", "onnx")
6466
retrieve_otx_model(args.data_dir, "Lite-hrnet-x-mod3")
6567
retrieve_otx_model(args.data_dir, "is_efficientnetb2b_maskrcnn_coco_reduced")
68+
retrieve_otx_model(
69+
args.data_dir, "is_efficientnetb2b_maskrcnn_coco_reduced_onnx", "onnx"
70+
)
6671
retrieve_otx_model(args.data_dir, "is_resnet50_maskrcnn_coco_reduced")
6772
retrieve_otx_model(args.data_dir, "mobilenet_v3_large_hc_cf")
6873
retrieve_otx_model(args.data_dir, "classification_model_with_xai_head")

tests/python/accuracy/public_scope.json

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,16 @@
3939
}
4040
]
4141
},
42+
{
43+
"name": "otx_models/Lite-hrnet-s_mod2.onnx",
44+
"type": "SegmentationModel",
45+
"test_data": [
46+
{
47+
"image": "coco128/images/train2017/000000000074.jpg",
48+
"reference": ["0: 0.563, 1: 0.437, [426,640,2], [0], [0]; object: 0.520, 26, object: 0.530, 42, object: 0.501, 4, object: 0.507, 27, object: 0.503, 8, object: 0.502, 6, object: 0.505, 18, object: 0.504, 13, object: 0.524, 87, object: 0.521, 89, object: 0.757, 2706, "]
49+
}
50+
]
51+
},
4252
{
4353
"name": "otx_models/Lite-hrnet-x-mod3.xml",
4454
"type": "SegmentationModel",
@@ -89,6 +99,16 @@
8999
}
90100
]
91101
},
102+
{
103+
"name": "otx_models/det_mobilenetv2_atss_bccd_onnx.onnx",
104+
"type": "DetectionModel",
105+
"test_data": [
106+
{
107+
"image": "BloodImage_00007.jpg",
108+
"reference": ["494, 159, 637, 308, 2 (WBC): 0.697; 28, 139, 135, 228, 1 (RBC): 0.628; 535, 375, 638, 479, 1 (RBC): 0.524; 513, 8, 633, 152, 1 (RBC): 0.430; 21, 291, 143, 399, 1 (RBC): 0.422; 196, 86, 410, 286, 1 (RBC): 0.422; [0]; [0]"]
109+
}
110+
]
111+
},
92112
{
93113
"name": "resnet-18-pytorch",
94114
"type": "ClassificationModel",
@@ -199,6 +219,16 @@
199219
}
200220
]
201221
},
222+
{
223+
"name": "otx_models/is_efficientnetb2b_maskrcnn_coco_reduced_onnx.onnx",
224+
"type": "MaskRCNNModel",
225+
"test_data": [
226+
{
227+
"image": "coco128/images/train2017/000000000074.jpg",
228+
"reference": ["458, 106, 495, 150, 1 (person): 0.818, 852, RotatedRect: 478.119 130.332 28.677 46.408 46.637; 0, 30, 178, 323, 2 (bicycle): 0.753, 26728, RotatedRect: 79.739 177.262 251.785 156.656 87.397; 0; [0]; person: 0.818, 139; bicycle: 0.753, 622; "]
229+
}
230+
]
231+
},
202232
{
203233
"name": "otx_models/is_resnet50_maskrcnn_coco_reduced.xml",
204234
"type": "MaskRCNNModel",

0 commit comments

Comments
 (0)