|
| 1 | +PEFT: Parameter-Efficient Fine-Tuning (LoRA & DoRA) for Classification |
| 2 | +====================================================================== |
| 3 | + |
| 4 | +.. note:: |
| 5 | + |
| 6 | + PEFT (LoRA, DoRA) is only supported for VisionTransformer models. |
| 7 | + See the method in otx.backend.native.models.classification.utils.peft |
| 8 | + |
| 9 | + |
| 10 | +Overview |
| 11 | +-------- |
| 12 | + |
| 13 | +OpenVINO™ Training Extensions supports Parameter-Efficient Fine-Tuning (PEFT) for Transformer classifiers via Low Rank Adaptation (LoRA) and Weight-Decomposed Low-Rank Adaptation (DoRA). |
| 14 | +These methods adapt pre-trained models with a small number of additional parameters instead of fully fine-tuning all weights. |
| 15 | + |
| 16 | +Benefits |
| 17 | +-------- |
| 18 | + |
| 19 | +- **Efficiency**: Minimal extra parameters and faster adaptation. |
| 20 | +- **Performance**: Competitive accuracy compared to full fine-tuning. |
| 21 | +- **Flexibility**: Apply LoRA or DoRA selectively to model components. |
| 22 | + |
| 23 | +Supported |
| 24 | +--------- |
| 25 | + |
| 26 | +- **Backbones**: Vision Transformer family (e.g., DINOv2) |
| 27 | +- **Tasks**: Multiclass, Multi-label, Hierarchical Label Classification |
| 28 | + |
| 29 | +How to Use PEFT in OpenVINO™ Training Extensions |
| 30 | +-------------------------------------------------- |
| 31 | + |
| 32 | +.. tab-set:: |
| 33 | + |
| 34 | + .. tab-item:: API |
| 35 | + |
| 36 | + .. code-block:: python |
| 37 | +
|
| 38 | + from training_extensions.src.otx.backend.native.models.classification.multiclass_models.vit import VisionTransformerMulticlassCls |
| 39 | +
|
| 40 | + # Choose one: "lora" or "dora" |
| 41 | + model = VisionTransformerForMulticlassCls(..., peft="lora") |
| 42 | +
|
| 43 | + .. tab-item:: CLI |
| 44 | + |
| 45 | + .. code-block:: bash |
| 46 | +
|
| 47 | + (otx) $ otx train ... --model.peft dora |
| 48 | +
|
| 49 | + .. tab-item:: YAML |
| 50 | + |
| 51 | + .. code-block:: yaml |
| 52 | +
|
| 53 | + task: MULTI_CLASS_CLS |
| 54 | + model: |
| 55 | + class_path: otx.backend.native.models.classification.multiclass_models.vit.VisionTransformerMulticlassCls |
| 56 | + init_args: |
| 57 | + label_info: 1000 |
| 58 | + model_name: "dinov2-small" |
| 59 | + peft: "dora" |
| 60 | +
|
| 61 | + optimizer: |
| 62 | + class_path: torch.optim.AdamW |
| 63 | + init_args: |
| 64 | + lr: 0.0001 |
| 65 | + weight_decay: 0.05 |
| 66 | +
|
| 67 | +Alternative |
| 68 | +----------- |
| 69 | + |
| 70 | +- **Linear Fine-Tuning**: Train only the classification head while keeping all backbone frozen. |
| 71 | + This approach works with *all* classification backbones. |
| 72 | + |
| 73 | +How to Use Linear Fine-Tuning |
| 74 | +----------------------------- |
| 75 | + |
| 76 | +.. tab-set:: |
| 77 | + |
| 78 | + .. tab-item:: API |
| 79 | + |
| 80 | + .. code-block:: python |
| 81 | +
|
| 82 | + from training_extensions.src.otx.backend.native.models.classification.multiclass_models.vit import VisionTransformerMulticlassCls |
| 83 | +
|
| 84 | + # Linear FT = freeze_backbone=True, no PEFT |
| 85 | + model = VisionTransformerMulticlassCls( |
| 86 | + ..., |
| 87 | + freeze_backbone=True, |
| 88 | + ) |
| 89 | +
|
| 90 | + .. tab-item:: CLI |
| 91 | + |
| 92 | + .. code-block:: bash |
| 93 | +
|
| 94 | + (otx) $ otx train ... --model.freeze_backbone true |
| 95 | +
|
| 96 | + .. tab-item:: YAML |
| 97 | + |
| 98 | + .. code-block:: yaml |
| 99 | +
|
| 100 | + task: MULTI_CLASS_CLS |
| 101 | + model: |
| 102 | + class_path: otx.backend.native.models.classification.multiclass_models.vit.VisionTransformerMulticlassCls |
| 103 | + init_args: |
| 104 | + label_info: 1000 |
| 105 | + model_name: "dinov2-small" |
| 106 | + peft: "" |
| 107 | + freeze_backbone: true |
0 commit comments