Skip to content

Commit 4494101

Browse files
authored
bugfix: use brackets in Samples dtype (#4997)
1 parent d1591bb commit 4494101

File tree

2 files changed

+11
-11
lines changed

2 files changed

+11
-11
lines changed

application/backend/app/services/datumaro_converter.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -40,8 +40,8 @@ class ClassificationSample(Sample):
4040

4141
image: str = image_path_field()
4242
image_info: ImageInfo = image_info_field()
43-
label: int = label_field(dtype=pl.Int32, is_list=False)
44-
confidence: float | None = score_field(dtype=pl.Float32)
43+
label: int = label_field(dtype=pl.Int32(), is_list=False)
44+
confidence: float | None = score_field(dtype=pl.Float32())
4545

4646

4747
class MultilabelClassificationSample(Sample):
@@ -58,8 +58,8 @@ class MultilabelClassificationSample(Sample):
5858
image: str = image_path_field()
5959
image_info: ImageInfo = image_info_field()
6060
# TODO: Use NDArrayFloat32 and NDArrayInt instead of np.ndarray after open-edge-platform/datumaro#1949 is solved
61-
label: np.ndarray = label_field(dtype=pl.Int32, multi_label=True)
62-
confidence: np.ndarray | None = score_field(dtype=pl.Float32, is_list=True)
61+
label: np.ndarray = label_field(dtype=pl.Int32(), multi_label=True)
62+
confidence: np.ndarray | None = score_field(dtype=pl.Float32(), is_list=True)
6363

6464

6565
class DetectionSample(Sample):
@@ -77,9 +77,9 @@ class DetectionSample(Sample):
7777
image: str = image_path_field()
7878
image_info: ImageInfo = image_info_field()
7979
# TODO: Use NDArrayFloat32 and NDArrayInt instead of np.ndarray after open-edge-platform/datumaro#1949 is solved
80-
bboxes: np.ndarray = bbox_field(dtype=pl.Int32)
81-
label: np.ndarray = label_field(dtype=pl.Int32, is_list=True)
82-
confidence: np.ndarray | None = score_field(dtype=pl.Float32, is_list=True)
80+
bboxes: np.ndarray = bbox_field(dtype=pl.Int32())
81+
label: np.ndarray = label_field(dtype=pl.Int32(), is_list=True)
82+
confidence: np.ndarray | None = score_field(dtype=pl.Float32(), is_list=True)
8383

8484

8585
class InstanceSegmentationSample(Sample):
@@ -97,9 +97,9 @@ class InstanceSegmentationSample(Sample):
9797
image: str = image_path_field()
9898
image_info: ImageInfo = image_info_field()
9999
# TODO: Use NDArrayFloat32 and NDArrayInt instead of np.ndarray after open-edge-platform/datumaro#1949 is solved
100-
polygons: np.ndarray = polygon_field(dtype=pl.Float32)
101-
label: np.ndarray = label_field(dtype=pl.Int32, is_list=True)
102-
confidence: np.ndarray | None = score_field(dtype=pl.Float32, is_list=True)
100+
polygons: np.ndarray = polygon_field(dtype=pl.Float32())
101+
label: np.ndarray = label_field(dtype=pl.Int32(), is_list=True)
102+
confidence: np.ndarray | None = score_field(dtype=pl.Float32(), is_list=True)
103103

104104

105105
def convert_rectangle(r: Rectangle) -> list[int]:

application/backend/uv.lock

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)