@@ -172,7 +172,7 @@ TRITONSERVER_Error* ModelInstanceState::Execute(TRITONBACKEND_Request** requests
172172 input_args.push_back (std::move (input_tensors_array));
173173 }
174174
175- MMDEPLOY_ERROR (" input: {}" , input_args);
175+ MMDEPLOY_DEBUG (" input: {}" , input_args);
176176
177177 uint64_t compute_start_ns = 0 ;
178178 SET_TIMESTAMP (compute_start_ns);
@@ -187,23 +187,20 @@ TRITONSERVER_Error* ModelInstanceState::Execute(TRITONBACKEND_Request** requests
187187 SET_TIMESTAMP (compute_end_ns);
188188
189189 std::vector<std::unique_ptr<BackendOutputResponder>> responders (request_count);
190- MMDEPLOY_ERROR (" request_count {}" , request_count);
190+ MMDEPLOY_DEBUG (" request_count {}" , request_count);
191191 for (uint32_t request_index = 0 ; request_index < request_count; ++request_index) {
192192 responders[request_index] = std::make_unique<BackendOutputResponder>(
193193 &requests[request_index], 1 , &response_vecs[request_index],
194194 model_state->TritonMemoryManager (), false , false , nullptr );
195- for (const auto & name : model_state->output_names ()) {
196- MMDEPLOY_ERROR (" name {}" , name);
197- }
198195 for (size_t output_id = 0 ; output_id < model_state->output_names ().size (); ++output_id) {
199196 auto output_name = model_state->output_names ()[output_id];
200- MMDEPLOY_ERROR (" output name {}" , output_name);
197+ MMDEPLOY_DEBUG (" output name {}" , output_name);
201198 auto output_data_type = model_state->output_data_types ()[output_id];
202199 for (const auto & tensor : output_tensors[request_index]) {
203200 if (tensor.name () == output_name) {
204201 if (output_data_type != TRITONSERVER_TYPE_BYTES) {
205202 auto shape = tensor.shape ();
206- MMDEPLOY_ERROR (" name {}, shape {}" , tensor.name (), shape);
203+ MMDEPLOY_DEBUG (" name {}, shape {}" , tensor.name (), shape);
207204 auto memory_type = TRITONSERVER_MEMORY_CPU;
208205 int64_t memory_type_id = 0 ;
209206 if (not tensor.device ().is_host ()) {
0 commit comments