Replies: 8 comments 22 replies
-
训练精度是正常。就是导出模型的时候就识别很差了。 |
Beta Was this translation helpful? Give feedback.
-
3.x 训练日志: 2023/01/12 14:05:24 - mmengine - INFO - 2023/01/12 14:05:26 - mmengine - INFO - |
Beta Was this translation helpful? Give feedback.
-
2.x 训练日志: 2023-01-13 18:12:30,644 - mmdet - INFO - Saving checkpoint at 50 epochs 2023-01-13 18:13:04,279 - mmdet - INFO - 2023-01-13 18:13:05,850 - mmdet - INFO - |
Beta Was this translation helpful? Give feedback.
-
Beta Was this translation helpful? Give feedback.
-
Beta Was this translation helpful? Give feedback.
-
3.x 和 2.x 的代码均为最新的代码 |
Beta Was this translation helpful? Give feedback.
-
我找到原因了,是 3.x 的版本,部署的时候尺寸输入大小必须要和训练的尺寸大小一致才正常。如果部署的时候的输入尺寸大小和训练的尺寸大小不一致就会出现这个问题。同时 rtmdet-ins 我也测试也是这个问题。 |
Beta Was this translation helpful? Give feedback.
-
Thanks for your patience and report. We have noticed this issue and will fix it A.S.A.P. Please be noted that this might take some time because we are in the vacation of the Spring Festival. |
Beta Was this translation helpful? Give feedback.
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
[copy from wechat mmdet group3]
我发现一个MMDetection 3.x分支有一个bug,就是训练的mask rcnn 导出模型部署的时候,比较小的物体识别效果很差很差,差到没有眼看那种。
反而默认分支的MMDetection就没有这个问题。
训练精度都很好,直接用Python检测也很好,就是导出部署模型的时候就对比较小物体识别很差很差。我用一模一样的数据做了对比。
mmdeploy部署,或者自己写的libtorch都是一样
开始我是用MMDetection 默认分支,后面换成MMDetection 3.x分支,现在发现部署的时候比较小的物体识别很差很差,又换回来MMDetection 默认分支了。
MMDetection 3.x分支识别的效果真的没有眼看了
(上图为2.x版本)
(上图为 3.x 版本)
直接用Python是正常的,只要转换模型部署就出问题了。
同一台电脑,同一份数据,同一个环境
3.x最新分支,和默认最新分支
Beta Was this translation helpful? Give feedback.
All reactions