getting mAP 0.00, when changing retinanet model to faster_rcnn in swin transfomer backbone config file. #9804
Unanswered
DishantMewada
asked this question in
Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
Hi there,
I want to use faster_rcnn with swin transformer as a backbone. There is a config available for retinanet with swin backbone.
I changed the model to faster_rcnn and my full config file is as follows (dataset has 5 classes).
I wonder what I am doing wrong, or do I need to change the out_indices. And can you please tell me how to figure out indices when changing the backbone.
Config file is attached.
And my train output -
/home/puser/miniconda3/envs/mmdetection/lib/python3.7/site-packages/mmdet/utils/setup_env.py:39: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
f'Setting OMP_NUM_THREADS environment variable for each process '
/home/puser/miniconda3/envs/mmdetection/lib/python3.7/site-packages/mmdet/utils/setup_env.py:49: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
f'Setting MKL_NUM_THREADS environment variable for each process '
2023-02-20 11:08:28,499 - mmdet - INFO - Environment info:
sys.platform: linux
Python: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0]
CUDA available: True
GPU 0: NVIDIA GeForce RTX 3060
CUDA_HOME: /usr/local/cuda-11.4
NVCC: Cuda compilation tools, release 11.4, V11.4.48
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.12.0
PyTorch compiling details: PyTorch built with:
TorchVision: 0.13.0
OpenCV: 4.6.0
MMCV: 1.5.3
MMCV Compiler: GCC 9.4
MMCV CUDA Compiler: 11.4
MMDetection: 2.25.0+178b9fd
2023-02-20 11:08:29,299 - mmdet - INFO - Distributed training: False
2023-02-20 11:08:30,153 - mmdet - INFO - Config:
model = dict(
type='FasterRCNN',
backbone=dict(
type='SwinTransformer',
embed_dims=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.2,
patch_norm=True,
out_indices=(1, 2, 3),
with_cp=False,
convert_weights=True,
init_cfg=dict(
type='Pretrained',
checkpoint=
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth'
)),
neck=dict(
type='FPN',
in_channels=[192, 384, 768],
out_channels=256,
num_outs=5,
start_level=0),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=5,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)))
dataset_type = 'COCODataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='CocoDataset',
ann_file='dataset/contamination_v2/train.json',
img_prefix='dataset/contamination_v2/train/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
],
classes=('Black Plastic', 'White Plastic', 'Clear Plastic',
'Polystyrene', 'Blue Bag')),
val=dict(
type='CocoDataset',
ann_file='dataset/contamination_v2/val.json',
img_prefix='dataset/contamination_v2/val/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
classes=('Black Plastic', 'White Plastic', 'Clear Plastic',
'Polystyrene', 'Blue Bag')),
test=dict(
type='CocoDataset',
ann_file='dataset/contamination_v2/test.json',
img_prefix='dataset/contamination_v2/test/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
classes=('Black Plastic', 'White Plastic', 'Clear Plastic',
'Polystyrene', 'Blue Bag')))
evaluation = dict(interval=1, metric='bbox')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
resume_from = None
workflow = [('train', 1), ('val', 1)]
opencv_num_threads = 0
mp_start_method = 'fork'
auto_scale_lr = dict(enable=False, base_batch_size=16)
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth'
classes = ('Black Plastic', 'White Plastic', 'Clear Plastic', 'Polystyrene',
'Blue Bag')
work_dir = './work_dirs/SOTA_fasterrcnn_swin_1x_dropout_0_v2'
auto_resume = False
gpu_ids = [0]
2023-02-20 11:08:30,154 - mmdet - INFO - Set random seed to 1694722566, deterministic: False
2023-02-20 11:08:30,483 - mmdet - INFO - load checkpoint from http path: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
2023-02-20 11:08:30,596 - mmdet - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
2023-02-20 11:08:30,608 - mmdet - INFO - initialize RPNHead with init_cfg {'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01}
2023-02-20 11:08:30,612 - mmdet - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'distribution': 'uniform', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}]
loading annotations into memory...
Done (t=0.10s)
creating index...
index created!
loading annotations into memory...
Done (t=0.03s)
creating index...
index created!
2023-02-20 11:08:31,826 - mmdet - INFO - Automatic scaling of learning rate (LR) has been disabled.
loading annotations into memory...
Done (t=0.11s)
creating index...
index created!
2023-02-20 11:08:31,942 - mmdet - INFO - load checkpoint from local path: checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
2023-02-20 11:08:32,029 - mmdet - WARNING - The model and loaded state dict do not match exactly
size mismatch for neck.lateral_convs.0.conv.weight: copying a param with shape torch.Size([256, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 192, 1, 1]).
size mismatch for neck.lateral_convs.1.conv.weight: copying a param with shape torch.Size([256, 512, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 384, 1, 1]).
size mismatch for neck.lateral_convs.2.conv.weight: copying a param with shape torch.Size([256, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 768, 1, 1]).
size mismatch for roi_head.bbox_head.fc_cls.weight: copying a param with shape torch.Size([81, 1024]) from checkpoint, the shape in current model is torch.Size([6, 1024]).
size mismatch for roi_head.bbox_head.fc_cls.bias: copying a param with shape torch.Size([81]) from checkpoint, the shape in current model is torch.Size([6]).
size mismatch for roi_head.bbox_head.fc_reg.weight: copying a param with shape torch.Size([320, 1024]) from checkpoint, the shape in current model is torch.Size([20, 1024]).
size mismatch for roi_head.bbox_head.fc_reg.bias: copying a param with shape torch.Size([320]) from checkpoint, the shape in current model is torch.Size([20]).
unexpected key in source state_dict: backbone.conv1.weight, backbone.bn1.weight, backbone.bn1.bias, backbone.bn1.running_mean, backbone.bn1.running_var, backbone.bn1.num_batches_tracked, backbone.layer1.0.conv1.weight, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.num_batches_tracked, backbone.layer1.0.conv2.weight, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.num_batches_tracked, backbone.layer1.0.conv3.weight, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.num_batches_tracked, backbone.layer1.0.downsample.0.weight, backbone.layer1.0.downsample.1.weight, backbone.layer1.0.downsample.1.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.0.downsample.1.num_batches_tracked, backbone.layer1.1.conv1.weight, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.num_batches_tracked, backbone.layer1.1.conv2.weight, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.num_batches_tracked, backbone.layer1.1.conv3.weight, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.num_batches_tracked, backbone.layer1.2.conv1.weight, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.num_batches_tracked, backbone.layer1.2.conv2.weight, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.num_batches_tracked, backbone.layer1.2.conv3.weight, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.num_batches_tracked, backbone.layer2.0.conv1.weight, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.num_batches_tracked, backbone.layer2.0.conv2.weight, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.num_batches_tracked, backbone.layer2.0.conv3.weight, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.num_batches_tracked, backbone.layer2.0.downsample.0.weight, backbone.layer2.0.downsample.1.weight, backbone.layer2.0.downsample.1.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.0.downsample.1.num_batches_tracked, backbone.layer2.1.conv1.weight, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.num_batches_tracked, backbone.layer2.1.conv2.weight, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.num_batches_tracked, backbone.layer2.1.conv3.weight, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.num_batches_tracked, backbone.layer2.2.conv1.weight, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.num_batches_tracked, backbone.layer2.2.conv2.weight, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.num_batches_tracked, backbone.layer2.2.conv3.weight, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.num_batches_tracked, backbone.layer2.3.conv1.weight, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.num_batches_tracked, backbone.layer2.3.conv2.weight, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.num_batches_tracked, backbone.layer2.3.conv3.weight, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.num_batches_tracked, backbone.layer3.0.conv1.weight, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.num_batches_tracked, backbone.layer3.0.conv2.weight, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.num_batches_tracked, backbone.layer3.0.conv3.weight, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.num_batches_tracked, backbone.layer3.0.downsample.0.weight, backbone.layer3.0.downsample.1.weight, backbone.layer3.0.downsample.1.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.0.downsample.1.num_batches_tracked, backbone.layer3.1.conv1.weight, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.num_batches_tracked, backbone.layer3.1.conv2.weight, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.num_batches_tracked, backbone.layer3.1.conv3.weight, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.num_batches_tracked, backbone.layer3.2.conv1.weight, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.num_batches_tracked, backbone.layer3.2.conv2.weight, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.num_batches_tracked, backbone.layer3.2.conv3.weight, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.num_batches_tracked, backbone.layer3.3.conv1.weight, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.num_batches_tracked, backbone.layer3.3.conv2.weight, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.num_batches_tracked, backbone.layer3.3.conv3.weight, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.num_batches_tracked, backbone.layer3.4.conv1.weight, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.num_batches_tracked, backbone.layer3.4.conv2.weight, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.num_batches_tracked, backbone.layer3.4.conv3.weight, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.num_batches_tracked, backbone.layer3.5.conv1.weight, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.num_batches_tracked, backbone.layer3.5.conv2.weight, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.num_batches_tracked, backbone.layer3.5.conv3.weight, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.num_batches_tracked, backbone.layer4.0.conv1.weight, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.num_batches_tracked, backbone.layer4.0.conv2.weight, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.num_batches_tracked, backbone.layer4.0.conv3.weight, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.num_batches_tracked, backbone.layer4.0.downsample.0.weight, backbone.layer4.0.downsample.1.weight, backbone.layer4.0.downsample.1.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.0.downsample.1.num_batches_tracked, backbone.layer4.1.conv1.weight, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.num_batches_tracked, backbone.layer4.1.conv2.weight, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.num_batches_tracked, backbone.layer4.1.conv3.weight, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.num_batches_tracked, backbone.layer4.2.conv1.weight, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.num_batches_tracked, backbone.layer4.2.conv2.weight, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.num_batches_tracked, backbone.layer4.2.conv3.weight, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.num_batches_tracked, neck.lateral_convs.3.conv.weight, neck.lateral_convs.3.conv.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.conv.bias
missing keys in source state_dict: backbone.patch_embed.projection.weight, backbone.patch_embed.projection.bias, backbone.patch_embed.norm.weight, backbone.patch_embed.norm.bias, backbone.stages.0.blocks.0.norm1.weight, backbone.stages.0.blocks.0.norm1.bias, backbone.stages.0.blocks.0.attn.w_msa.relative_position_bias_table, backbone.stages.0.blocks.0.attn.w_msa.relative_position_index, backbone.stages.0.blocks.0.attn.w_msa.qkv.weight, backbone.stages.0.blocks.0.attn.w_msa.qkv.bias, backbone.stages.0.blocks.0.attn.w_msa.proj.weight, backbone.stages.0.blocks.0.attn.w_msa.proj.bias, backbone.stages.0.blocks.0.norm2.weight, backbone.stages.0.blocks.0.norm2.bias, backbone.stages.0.blocks.0.ffn.layers.0.0.weight, backbone.stages.0.blocks.0.ffn.layers.0.0.bias, backbone.stages.0.blocks.0.ffn.layers.1.weight, backbone.stages.0.blocks.0.ffn.layers.1.bias, backbone.stages.0.blocks.1.norm1.weight, backbone.stages.0.blocks.1.norm1.bias, backbone.stages.0.blocks.1.attn.w_msa.relative_position_bias_table, backbone.stages.0.blocks.1.attn.w_msa.relative_position_index, backbone.stages.0.blocks.1.attn.w_msa.qkv.weight, backbone.stages.0.blocks.1.attn.w_msa.qkv.bias, backbone.stages.0.blocks.1.attn.w_msa.proj.weight, backbone.stages.0.blocks.1.attn.w_msa.proj.bias, backbone.stages.0.blocks.1.norm2.weight, backbone.stages.0.blocks.1.norm2.bias, backbone.stages.0.blocks.1.ffn.layers.0.0.weight, backbone.stages.0.blocks.1.ffn.layers.0.0.bias, backbone.stages.0.blocks.1.ffn.layers.1.weight, backbone.stages.0.blocks.1.ffn.layers.1.bias, backbone.stages.0.downsample.norm.weight, backbone.stages.0.downsample.norm.bias, backbone.stages.0.downsample.reduction.weight, backbone.stages.1.blocks.0.norm1.weight, backbone.stages.1.blocks.0.norm1.bias, backbone.stages.1.blocks.0.attn.w_msa.relative_position_bias_table, backbone.stages.1.blocks.0.attn.w_msa.relative_position_index, backbone.stages.1.blocks.0.attn.w_msa.qkv.weight, backbone.stages.1.blocks.0.attn.w_msa.qkv.bias, backbone.stages.1.blocks.0.attn.w_msa.proj.weight, backbone.stages.1.blocks.0.attn.w_msa.proj.bias, backbone.stages.1.blocks.0.norm2.weight, backbone.stages.1.blocks.0.norm2.bias, backbone.stages.1.blocks.0.ffn.layers.0.0.weight, backbone.stages.1.blocks.0.ffn.layers.0.0.bias, backbone.stages.1.blocks.0.ffn.layers.1.weight, backbone.stages.1.blocks.0.ffn.layers.1.bias, backbone.stages.1.blocks.1.norm1.weight, backbone.stages.1.blocks.1.norm1.bias, backbone.stages.1.blocks.1.attn.w_msa.relative_position_bias_table, backbone.stages.1.blocks.1.attn.w_msa.relative_position_index, backbone.stages.1.blocks.1.attn.w_msa.qkv.weight, backbone.stages.1.blocks.1.attn.w_msa.qkv.bias, backbone.stages.1.blocks.1.attn.w_msa.proj.weight, backbone.stages.1.blocks.1.attn.w_msa.proj.bias, backbone.stages.1.blocks.1.norm2.weight, backbone.stages.1.blocks.1.norm2.bias, backbone.stages.1.blocks.1.ffn.layers.0.0.weight, backbone.stages.1.blocks.1.ffn.layers.0.0.bias, backbone.stages.1.blocks.1.ffn.layers.1.weight, backbone.stages.1.blocks.1.ffn.layers.1.bias, backbone.stages.1.downsample.norm.weight, backbone.stages.1.downsample.norm.bias, backbone.stages.1.downsample.reduction.weight, backbone.stages.2.blocks.0.norm1.weight, backbone.stages.2.blocks.0.norm1.bias, backbone.stages.2.blocks.0.attn.w_msa.relative_position_bias_table, backbone.stages.2.blocks.0.attn.w_msa.relative_position_index, backbone.stages.2.blocks.0.attn.w_msa.qkv.weight, backbone.stages.2.blocks.0.attn.w_msa.qkv.bias, backbone.stages.2.blocks.0.attn.w_msa.proj.weight, backbone.stages.2.blocks.0.attn.w_msa.proj.bias, backbone.stages.2.blocks.0.norm2.weight, backbone.stages.2.blocks.0.norm2.bias, backbone.stages.2.blocks.0.ffn.layers.0.0.weight, backbone.stages.2.blocks.0.ffn.layers.0.0.bias, backbone.stages.2.blocks.0.ffn.layers.1.weight, backbone.stages.2.blocks.0.ffn.layers.1.bias, backbone.stages.2.blocks.1.norm1.weight, backbone.stages.2.blocks.1.norm1.bias, backbone.stages.2.blocks.1.attn.w_msa.relative_position_bias_table, backbone.stages.2.blocks.1.attn.w_msa.relative_position_index, backbone.stages.2.blocks.1.attn.w_msa.qkv.weight, backbone.stages.2.blocks.1.attn.w_msa.qkv.bias, backbone.stages.2.blocks.1.attn.w_msa.proj.weight, backbone.stages.2.blocks.1.attn.w_msa.proj.bias, backbone.stages.2.blocks.1.norm2.weight, backbone.stages.2.blocks.1.norm2.bias, backbone.stages.2.blocks.1.ffn.layers.0.0.weight, backbone.stages.2.blocks.1.ffn.layers.0.0.bias, backbone.stages.2.blocks.1.ffn.layers.1.weight, backbone.stages.2.blocks.1.ffn.layers.1.bias, backbone.stages.2.blocks.2.norm1.weight, backbone.stages.2.blocks.2.norm1.bias, backbone.stages.2.blocks.2.attn.w_msa.relative_position_bias_table, backbone.stages.2.blocks.2.attn.w_msa.relative_position_index, backbone.stages.2.blocks.2.attn.w_msa.qkv.weight, backbone.stages.2.blocks.2.attn.w_msa.qkv.bias, backbone.stages.2.blocks.2.attn.w_msa.proj.weight, backbone.stages.2.blocks.2.attn.w_msa.proj.bias, backbone.stages.2.blocks.2.norm2.weight, backbone.stages.2.blocks.2.norm2.bias, backbone.stages.2.blocks.2.ffn.layers.0.0.weight, backbone.stages.2.blocks.2.ffn.layers.0.0.bias, backbone.stages.2.blocks.2.ffn.layers.1.weight, backbone.stages.2.blocks.2.ffn.layers.1.bias, backbone.stages.2.blocks.3.norm1.weight, backbone.stages.2.blocks.3.norm1.bias, backbone.stages.2.blocks.3.attn.w_msa.relative_position_bias_table, backbone.stages.2.blocks.3.attn.w_msa.relative_position_index, backbone.stages.2.blocks.3.attn.w_msa.qkv.weight, backbone.stages.2.blocks.3.attn.w_msa.qkv.bias, backbone.stages.2.blocks.3.attn.w_msa.proj.weight, backbone.stages.2.blocks.3.attn.w_msa.proj.bias, backbone.stages.2.blocks.3.norm2.weight, backbone.stages.2.blocks.3.norm2.bias, backbone.stages.2.blocks.3.ffn.layers.0.0.weight, backbone.stages.2.blocks.3.ffn.layers.0.0.bias, backbone.stages.2.blocks.3.ffn.layers.1.weight, backbone.stages.2.blocks.3.ffn.layers.1.bias, backbone.stages.2.blocks.4.norm1.weight, backbone.stages.2.blocks.4.norm1.bias, backbone.stages.2.blocks.4.attn.w_msa.relative_position_bias_table, backbone.stages.2.blocks.4.attn.w_msa.relative_position_index, backbone.stages.2.blocks.4.attn.w_msa.qkv.weight, backbone.stages.2.blocks.4.attn.w_msa.qkv.bias, backbone.stages.2.blocks.4.attn.w_msa.proj.weight, backbone.stages.2.blocks.4.attn.w_msa.proj.bias, backbone.stages.2.blocks.4.norm2.weight, backbone.stages.2.blocks.4.norm2.bias, backbone.stages.2.blocks.4.ffn.layers.0.0.weight, backbone.stages.2.blocks.4.ffn.layers.0.0.bias, backbone.stages.2.blocks.4.ffn.layers.1.weight, backbone.stages.2.blocks.4.ffn.layers.1.bias, backbone.stages.2.blocks.5.norm1.weight, backbone.stages.2.blocks.5.norm1.bias, backbone.stages.2.blocks.5.attn.w_msa.relative_position_bias_table, backbone.stages.2.blocks.5.attn.w_msa.relative_position_index, backbone.stages.2.blocks.5.attn.w_msa.qkv.weight, backbone.stages.2.blocks.5.attn.w_msa.qkv.bias, backbone.stages.2.blocks.5.attn.w_msa.proj.weight, backbone.stages.2.blocks.5.attn.w_msa.proj.bias, backbone.stages.2.blocks.5.norm2.weight, backbone.stages.2.blocks.5.norm2.bias, backbone.stages.2.blocks.5.ffn.layers.0.0.weight, backbone.stages.2.blocks.5.ffn.layers.0.0.bias, backbone.stages.2.blocks.5.ffn.layers.1.weight, backbone.stages.2.blocks.5.ffn.layers.1.bias, backbone.stages.2.downsample.norm.weight, backbone.stages.2.downsample.norm.bias, backbone.stages.2.downsample.reduction.weight, backbone.stages.3.blocks.0.norm1.weight, backbone.stages.3.blocks.0.norm1.bias, backbone.stages.3.blocks.0.attn.w_msa.relative_position_bias_table, backbone.stages.3.blocks.0.attn.w_msa.relative_position_index, backbone.stages.3.blocks.0.attn.w_msa.qkv.weight, backbone.stages.3.blocks.0.attn.w_msa.qkv.bias, backbone.stages.3.blocks.0.attn.w_msa.proj.weight, backbone.stages.3.blocks.0.attn.w_msa.proj.bias, backbone.stages.3.blocks.0.norm2.weight, backbone.stages.3.blocks.0.norm2.bias, backbone.stages.3.blocks.0.ffn.layers.0.0.weight, backbone.stages.3.blocks.0.ffn.layers.0.0.bias, backbone.stages.3.blocks.0.ffn.layers.1.weight, backbone.stages.3.blocks.0.ffn.layers.1.bias, backbone.stages.3.blocks.1.norm1.weight, backbone.stages.3.blocks.1.norm1.bias, backbone.stages.3.blocks.1.attn.w_msa.relative_position_bias_table, backbone.stages.3.blocks.1.attn.w_msa.relative_position_index, backbone.stages.3.blocks.1.attn.w_msa.qkv.weight, backbone.stages.3.blocks.1.attn.w_msa.qkv.bias, backbone.stages.3.blocks.1.attn.w_msa.proj.weight, backbone.stages.3.blocks.1.attn.w_msa.proj.bias, backbone.stages.3.blocks.1.norm2.weight, backbone.stages.3.blocks.1.norm2.bias, backbone.stages.3.blocks.1.ffn.layers.0.0.weight, backbone.stages.3.blocks.1.ffn.layers.0.0.bias, backbone.stages.3.blocks.1.ffn.layers.1.weight, backbone.stages.3.blocks.1.ffn.layers.1.bias, backbone.norm1.weight, backbone.norm1.bias, backbone.norm2.weight, backbone.norm2.bias, backbone.norm3.weight, backbone.norm3.bias
2023-02-20 11:08:32,037 - mmdet - INFO - Start running, host: puser@Confirm8fkc1m3, work_dir: /home/puser/Desktop/mm/work_dirs/SOTA_fasterrcnn_swin_1x_dropout_0_v2
2023-02-20 11:08:32,037 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
before_train_epoch:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
before_train_iter:
(VERY_HIGH ) StepLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) EvalHook
after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
after_train_epoch:
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
before_val_epoch:
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
before_val_iter:
(LOW ) IterTimerHook
after_val_iter:
(LOW ) IterTimerHook
after_val_epoch:
(VERY_LOW ) TextLoggerHook
after_run:
(VERY_LOW ) TextLoggerHook
2023-02-20 11:08:32,037 - mmdet - INFO - workflow: [('train', 1), ('val', 1)], max: 12 epochs
2023-02-20 11:08:32,037 - mmdet - INFO - Checkpoints will be saved to /home/puser/Desktop/mm/work_dirs/SOTA_fasterrcnn_swin_1x_dropout_0_v2 by HardDiskBackend.
2023-02-20 11:08:59,328 - mmdet - INFO - Epoch [1][50/999] lr: 9.890e-04, eta: 1:48:12, time: 0.544, data_time: 0.048, memory: 4898, loss_rpn_cls: 0.0832, loss_rpn_bbox: 0.0100, loss_cls: 0.4032, acc: 87.8281, loss_bbox: 0.0289, loss: 0.5254
2023-02-20 11:09:22,788 - mmdet - INFO - Epoch [1][100/999] lr: 1.988e-03, eta: 1:40:21, time: 0.469, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0487, loss_rpn_bbox: 0.0099, loss_cls: 0.1164, acc: 98.0957, loss_bbox: 0.0537, loss: 0.2287
2023-02-20 11:09:46,820 - mmdet - INFO - Epoch [1][150/999] lr: 2.987e-03, eta: 1:38:14, time: 0.481, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0418, loss_rpn_bbox: 0.0087, loss_cls: 0.1196, acc: 97.9062, loss_bbox: 0.0660, loss: 0.2360
2023-02-20 11:10:10,847 - mmdet - INFO - Epoch [1][200/999] lr: 3.986e-03, eta: 1:36:57, time: 0.481, data_time: 0.008, memory: 4898, loss_rpn_cls: 0.0377, loss_rpn_bbox: 0.0082, loss_cls: 0.1031, acc: 98.1309, loss_bbox: 0.0528, loss: 0.2019
2023-02-20 11:10:34,884 - mmdet - INFO - Epoch [1][250/999] lr: 4.985e-03, eta: 1:36:03, time: 0.481, data_time: 0.008, memory: 4898, loss_rpn_cls: 0.0414, loss_rpn_bbox: 0.0109, loss_cls: 0.1185, acc: 97.8105, loss_bbox: 0.0686, loss: 0.2394
2023-02-20 11:10:58,946 - mmdet - INFO - Epoch [1][300/999] lr: 5.984e-03, eta: 1:35:19, time: 0.481, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0472, loss_rpn_bbox: 0.0103, loss_cls: 0.1099, acc: 97.9980, loss_bbox: 0.0587, loss: 0.2262
2023-02-20 11:11:22,996 - mmdet - INFO - Epoch [1][350/999] lr: 6.983e-03, eta: 1:34:41, time: 0.481, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0445, loss_rpn_bbox: 0.0101, loss_cls: 0.1221, acc: 97.7949, loss_bbox: 0.0650, loss: 0.2418
2023-02-20 11:11:47,218 - mmdet - INFO - Epoch [1][400/999] lr: 7.982e-03, eta: 1:34:11, time: 0.484, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0414, loss_rpn_bbox: 0.0099, loss_cls: 0.1093, acc: 98.0176, loss_bbox: 0.0598, loss: 0.2204
2023-02-20 11:12:11,372 - mmdet - INFO - Epoch [1][450/999] lr: 8.981e-03, eta: 1:33:41, time: 0.483, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0331, loss_rpn_bbox: 0.0076, loss_cls: 0.1060, acc: 98.1816, loss_bbox: 0.0557, loss: 0.2025
2023-02-20 11:12:35,364 - mmdet - INFO - Epoch [1][500/999] lr: 9.980e-03, eta: 1:33:08, time: 0.480, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0358, loss_rpn_bbox: 0.0095, loss_cls: 0.1082, acc: 97.9746, loss_bbox: 0.0601, loss: 0.2136
2023-02-20 11:12:59,461 - mmdet - INFO - Epoch [1][550/999] lr: 1.000e-02, eta: 1:32:39, time: 0.482, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0364, loss_rpn_bbox: 0.0082, loss_cls: 0.1177, acc: 98.0449, loss_bbox: 0.0563, loss: 0.2186
2023-02-20 11:13:23,589 - mmdet - INFO - Epoch [1][600/999] lr: 1.000e-02, eta: 1:32:11, time: 0.483, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0391, loss_rpn_bbox: 0.0079, loss_cls: 0.0941, acc: 98.2441, loss_bbox: 0.0510, loss: 0.1921
2023-02-20 11:13:47,746 - mmdet - INFO - Epoch [1][650/999] lr: 1.000e-02, eta: 1:31:45, time: 0.483, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0459, loss_rpn_bbox: 0.0113, loss_cls: 0.1343, acc: 97.5957, loss_bbox: 0.0748, loss: 0.2662
2023-02-20 11:14:11,477 - mmdet - INFO - Epoch [1][700/999] lr: 1.000e-02, eta: 1:31:12, time: 0.475, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0436, loss_rpn_bbox: 0.0100, loss_cls: 0.1269, acc: 97.6895, loss_bbox: 0.0705, loss: 0.2510
2023-02-20 11:14:35,457 - mmdet - INFO - Epoch [1][750/999] lr: 1.000e-02, eta: 1:30:43, time: 0.480, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0396, loss_rpn_bbox: 0.0091, loss_cls: 0.1300, acc: 97.8535, loss_bbox: 0.0648, loss: 0.2435
2023-02-20 11:14:59,463 - mmdet - INFO - Epoch [1][800/999] lr: 1.000e-02, eta: 1:30:16, time: 0.480, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0404, loss_rpn_bbox: 0.0112, loss_cls: 0.1308, acc: 97.5430, loss_bbox: 0.0768, loss: 0.2593
2023-02-20 11:15:23,435 - mmdet - INFO - Epoch [1][850/999] lr: 1.000e-02, eta: 1:29:49, time: 0.479, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0343, loss_rpn_bbox: 0.0076, loss_cls: 0.1035, acc: 98.0918, loss_bbox: 0.0576, loss: 0.2029
2023-02-20 11:15:47,620 - mmdet - INFO - Epoch [1][900/999] lr: 1.000e-02, eta: 1:29:25, time: 0.484, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0355, loss_rpn_bbox: 0.0075, loss_cls: 0.0957, acc: 98.2988, loss_bbox: 0.0478, loss: 0.1864
2023-02-20 11:16:11,622 - mmdet - INFO - Epoch [1][950/999] lr: 1.000e-02, eta: 1:28:58, time: 0.480, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0340, loss_rpn_bbox: 0.0064, loss_cls: 0.1156, acc: 98.0488, loss_bbox: 0.0605, loss: 0.2166
2023-02-20 11:16:35,155 - mmdet - INFO - Saving checkpoint at 1 epochs
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 523/523, 10.9 task/s, elapsed: 48s, ETA: 0s2023-02-20 11:17:24,068 - mmdet - INFO - Evaluating bbox...
Loading and preparing results...
DONE (t=0.11s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type bbox
DONE (t=0.92s).
Accumulating evaluation results...
DONE (t=0.22s).
2023-02-20 11:17:25,365 - mmdet - INFO -
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.010
2023-02-20 11:17:25,376 - mmdet - INFO - Exp name: SOTA_fasterrcnn_swin_1x_dropout_0_v2.py
2023-02-20 11:17:25,376 - mmdet - INFO - Epoch(val) [1][523] bbox_mAP: 0.0000, bbox_mAP_50: 0.0000, bbox_mAP_75: 0.0000, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.000 0.000 -1.000 0.000 0.000
2023-02-20 11:18:14,226 - mmdet - INFO - Exp name: SOTA_fasterrcnn_swin_1x_dropout_0_v2.py
2023-02-20 11:18:14,226 - mmdet - INFO - Epoch(val) [1][262] loss_rpn_cls: 0.0412, loss_rpn_bbox: 0.0093, loss_cls: 0.1424, acc: 97.6946, loss_bbox: 0.0714, loss: 0.2643
2023-02-20 11:18:40,385 - mmdet - INFO - Epoch [2][50/999] lr: 1.000e-02, eta: 1:24:23, time: 0.521, data_time: 0.049, memory: 4898, loss_rpn_cls: 0.0413, loss_rpn_bbox: 0.0078, loss_cls: 0.1352, acc: 97.7832, loss_bbox: 0.0701, loss: 0.2544
2023-02-20 11:19:04,296 - mmdet - INFO - Epoch [2][100/999] lr: 1.000e-02, eta: 1:24:07, time: 0.478, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0341, loss_rpn_bbox: 0.0076, loss_cls: 0.1161, acc: 97.8613, loss_bbox: 0.0647, loss: 0.2226
2023-02-20 11:19:28,319 - mmdet - INFO - Epoch [2][150/999] lr: 1.000e-02, eta: 1:23:52, time: 0.480, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0335, loss_rpn_bbox: 0.0083, loss_cls: 0.1099, acc: 98.0410, loss_bbox: 0.0617, loss: 0.2134
2023-02-20 11:19:52,421 - mmdet - INFO - Epoch [2][200/999] lr: 1.000e-02, eta: 1:23:37, time: 0.482, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0307, loss_rpn_bbox: 0.0084, loss_cls: 0.1146, acc: 98.0293, loss_bbox: 0.0590, loss: 0.2128
2023-02-20 11:20:16,578 - mmdet - INFO - Epoch [2][250/999] lr: 1.000e-02, eta: 1:23:21, time: 0.483, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0358, loss_rpn_bbox: 0.0092, loss_cls: 0.1361, acc: 97.4609, loss_bbox: 0.0804, loss: 0.2614
2023-02-20 11:20:40,682 - mmdet - INFO - Epoch [2][300/999] lr: 1.000e-02, eta: 1:23:05, time: 0.482, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0348, loss_rpn_bbox: 0.0074, loss_cls: 0.0972, acc: 98.2617, loss_bbox: 0.0549, loss: 0.1943
2023-02-20 11:21:05,017 - mmdet - INFO - Epoch [2][350/999] lr: 1.000e-02, eta: 1:22:49, time: 0.487, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0303, loss_rpn_bbox: 0.0075, loss_cls: 0.1079, acc: 98.1777, loss_bbox: 0.0554, loss: 0.2012
2023-02-20 11:21:29,163 - mmdet - INFO - Epoch [2][400/999] lr: 1.000e-02, eta: 1:22:32, time: 0.483, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0369, loss_rpn_bbox: 0.0081, loss_cls: 0.1183, acc: 98.2090, loss_bbox: 0.0576, loss: 0.2210
2023-02-20 11:21:53,252 - mmdet - INFO - Epoch [2][450/999] lr: 1.000e-02, eta: 1:22:14, time: 0.482, data_time: 0.008, memory: 4898, loss_rpn_cls: 0.0346, loss_rpn_bbox: 0.0084, loss_cls: 0.1305, acc: 97.9531, loss_bbox: 0.0634, loss: 0.2370
2023-02-20 11:22:17,328 - mmdet - INFO - Epoch [2][500/999] lr: 1.000e-02, eta: 1:21:55, time: 0.482, data_time: 0.007, memory: 4898, loss_rpn_cls: 0.0312, loss_rpn_bbox: 0.0062, loss_cls: 0.0898, acc: 98.2910, loss_bbox: 0.0472, loss: 0.1744
Thank you.
config.txt
Beta Was this translation helpful? Give feedback.
All reactions