-
Notifications
You must be signed in to change notification settings - Fork 9.8k
Home
Kai Chen edited this page Aug 25, 2018
·
3 revisions
MMDetection is a toolkit for object detection. It consists of the following modules.
-
core: core functionality such as anchor generation, training target computing, etc. -
datasets: coco-style dataset, voc-style dataset, self-defined pickle dataset -
models: components and detectors -
ops: custom operators, mostly cuda extensions. -
tools: training/testing/evaluation/conversion.
The first release will contain implementations of RPN, Faster R-CNN, Mask R-CNN, FPN, Cascade R-CNN. Only COCO dataset is supported.
- refactoring and finalize the API (01/09)
-
datasets.coco(02/09) -
models.backbones.bricks,models.backbones.resnet(02/09) -
models.necks.fpn(03/09) -
models.rpn_heads(03/09) -
models.bbox_heads(03/09) -
models.mask_heads(03/09) -
ops.roi_pooling,ops.roi_align(03/09) -
models.detectors.rpn,models.detectors.two_stage,models.detectors.cascade(04/09) -
tools.train,tools.test(05/09) - documentation (06/09)
- Add ResNeXt backbone.
- Add support for Fast R-CNN
- Add support for single-stage detector
- Add VOC-style dataset and self-defined pickle-based dataset
- Add deformable convolution
- Add SyncBN and GN
- Add support for R-CNN
- Add support for R-FCN