|
| 1 | +import os |
| 2 | +from typing import Tuple |
| 3 | + |
| 4 | +import pytest |
| 5 | +from langchain import hub |
| 6 | +from langchain_aws import ChatBedrock |
| 7 | +from langchain.agents import AgentExecutor, create_tool_calling_agent |
| 8 | +from langchain_community.tools import DuckDuckGoSearchResults |
| 9 | + |
| 10 | +@pytest.mark.vcr |
| 11 | +def test_agents(instrument_legacy, span_exporter, log_exporter): |
| 12 | + search = DuckDuckGoSearchResults() |
| 13 | + tools = [search] |
| 14 | + model = ChatBedrock( |
| 15 | + model_id="anthropic.claude-3-5-sonnet-20240620-v1:0", |
| 16 | + region_name="us-west-2", |
| 17 | + temperature=0.9, |
| 18 | + max_tokens=2048, |
| 19 | + model_kwargs={ |
| 20 | + "top_p": 0.9, |
| 21 | + }, |
| 22 | + ) |
| 23 | + |
| 24 | + prompt = hub.pull( |
| 25 | + "hwchase17/openai-functions-agent", |
| 26 | + api_key=os.environ["LANGSMITH_API_KEY"], |
| 27 | + ) |
| 28 | + |
| 29 | + agent = create_tool_calling_agent(model, tools, prompt) |
| 30 | + agent_executor = AgentExecutor(agent=agent, tools=tools) |
| 31 | + |
| 32 | + agent_executor.invoke({"input": "When was Amazon founded?"}) |
| 33 | + |
| 34 | + spans = span_exporter.get_finished_spans() |
| 35 | + |
| 36 | + assert set([span.name for span in spans]) == { |
| 37 | + "chat anthropic.claude-3-5-sonnet-20240620-v1:0", |
| 38 | + "chain LLMChain", |
| 39 | + "chain AgentExecutor", |
| 40 | + "execute_tool search", |
| 41 | + "chain RunnableSequence", |
| 42 | + "chain ToolsAgentOutputParser", |
| 43 | + "chain ChatPromptTemplate", |
| 44 | + "chain RunnableAssign<agent_scratchpad>", |
| 45 | + "chain RunnableParallel<agent_scratchpad>", |
| 46 | + "chain RunnableLambda", |
| 47 | + "execute_tool duckduckgo_results_json", |
| 48 | + } |
| 49 | + |
| 50 | + |
| 51 | +@pytest.mark.vcr |
| 52 | +def test_agents_with_events_with_content( |
| 53 | + instrument_with_content, span_exporter, log_exporter |
| 54 | +): |
| 55 | + search = DuckDuckGoSearchResults() |
| 56 | + tools = [search] |
| 57 | + model = ChatBedrock( |
| 58 | + model_id="anthropic.claude-3-5-sonnet-20240620-v1:0", |
| 59 | + region_name="us-west-2", |
| 60 | + temperature=0.9, |
| 61 | + max_tokens=2048, |
| 62 | + model_kwargs={ |
| 63 | + "top_p": 0.9, |
| 64 | + }, |
| 65 | + ) |
| 66 | + |
| 67 | + |
| 68 | + prompt = hub.pull( |
| 69 | + "hwchase17/openai-functions-agent", |
| 70 | + api_key=os.environ["LANGSMITH_API_KEY"], |
| 71 | + ) |
| 72 | + |
| 73 | + agent = create_tool_calling_agent(model, tools, prompt) |
| 74 | + agent_executor = AgentExecutor(agent=agent, tools=tools) |
| 75 | + |
| 76 | + |
| 77 | + prompt = "What is AWS?" |
| 78 | + response = agent_executor.invoke({"input": prompt}) |
| 79 | + |
| 80 | + spans = span_exporter.get_finished_spans() |
| 81 | + |
| 82 | + assert set([span.name for span in spans]) == { |
| 83 | + "chat anthropic.claude-3-5-sonnet-20240620-v1:0", |
| 84 | + "chain LLMChain", |
| 85 | + "chain AgentExecutor", |
| 86 | + "execute_tool search", |
| 87 | + "chain RunnableSequence", |
| 88 | + "chain ToolsAgentOutputParser", |
| 89 | + "chain ChatPromptTemplate", |
| 90 | + "chain RunnableAssign<agent_scratchpad>", |
| 91 | + "chain RunnableParallel<agent_scratchpad>", |
| 92 | + "chain RunnableLambda", |
| 93 | + "execute_tool duckduckgo_results_json", |
| 94 | + } |
| 95 | + |
| 96 | + |
| 97 | +@pytest.mark.vcr |
| 98 | +def test_agents_with_events_with_no_content( |
| 99 | + instrument_with_no_content, span_exporter, log_exporter |
| 100 | +): |
| 101 | + search = DuckDuckGoSearchResults() |
| 102 | + tools = [search] |
| 103 | + model = ChatBedrock( |
| 104 | + model_id="anthropic.claude-3-5-sonnet-20240620-v1:0", |
| 105 | + region_name="us-west-2", |
| 106 | + temperature=0.9, |
| 107 | + max_tokens=2048, |
| 108 | + model_kwargs={ |
| 109 | + "top_p": 0.9, |
| 110 | + }, |
| 111 | + ) |
| 112 | + |
| 113 | + prompt = hub.pull( |
| 114 | + "hwchase17/openai-functions-agent", |
| 115 | + api_key=os.environ["LANGSMITH_API_KEY"], |
| 116 | + ) |
| 117 | + |
| 118 | + agent = create_tool_calling_agent(model, tools, prompt) |
| 119 | + agent_executor = AgentExecutor(agent=agent, tools=tools) |
| 120 | + |
| 121 | + agent_executor.invoke({"input": "What is AWS?"}) |
| 122 | + |
| 123 | + spans = span_exporter.get_finished_spans() |
| 124 | + |
| 125 | + assert set([span.name for span in spans]) == { |
| 126 | + "chat anthropic.claude-3-5-sonnet-20240620-v1:0", |
| 127 | + "chain LLMChain", |
| 128 | + "chain AgentExecutor", |
| 129 | + "execute_tool search", |
| 130 | + "chain RunnableSequence", |
| 131 | + "chain ToolsAgentOutputParser", |
| 132 | + "chain ChatPromptTemplate", |
| 133 | + "chain RunnableAssign<agent_scratchpad>", |
| 134 | + "chain RunnableParallel<agent_scratchpad>", |
| 135 | + "chain RunnableLambda", |
| 136 | + "execute_tool duckduckgo_results_json", |
| 137 | + } |
0 commit comments